Lec 22:
Graphs and Trees IV

Prof. Adam J. Aviv
GW
CSCI 1311 Discrete Structures I Spring 2023

Rooted Tree

In a rooted tree there is one vertex that is distinguished from the other, the root. From the root vertex, all other vertices descended.

Since a Tree is acyclic, distinguishing one vertex as the root provides a way to distinguish and classify other vertices in the tree. It is also an important structure for organizing data with hierarchical relationships.

Rooted Trees

A tree is like a family

- a is the root of the tree, all vertices descend from the root
- a is the parent of b and c
- b and c are siblings
- c is the parent of d and e
- d and e are siblings
- b, c, d, e are descendants of a
- d and e are descendants of c
- b, d, and e has no descendants and thus are leafs

Roots, Sub-Roots, Internal and Leaf vertices

- Root of the tree has no parents
- An internal vertex is one that has a parent and a child
- A leaf vertex has a parent but no children
- An internal vertex can form the sub-root of a sub-tree

Branching Factor

The branching factor is the number of children for each parent. If a vertex has a branching factor of 0 , it is a leaf node.

The branching factor of the tree is the maximum number of chidlren for each parent. The branching factor of the tree above is 3 .

Levels and Height of a tree

The level of the tree describes how many descendants away the given vertex is from

The root is at level 0 , and each level counts down from there. The height of a tree is the maximum level of vertices in the tree. The tree above has height 3.

Exercise

- Name all internal vertices.
- Name all leaf vertices.
- What are the siblings of f ?
- What are the descendants of d ?
- What is the level of j ?
- What is the height of the tree?
- What is the height of the sub-tree where b is the root?
- What is the height of the sub-tree where e is the root?
- What is the branching factor of the tree?

Binary Trees

A Full Binary Tree

A full binary tree is a binary tree where every level of the tree contains the maximal number of vertices, or 0 vertices. Or, put another way, every parent (internal vertex) has exactly 2 children.

Binary Trees

A Binary Tree is a tree where the branching factor is exactly 2 . Ever internal vertex can have either a left child (or left sub-tree) or a right child (or right sub-tree)

Number of Vertices in Full Binary Tree

If a tree has height h, how many vertices must be in the tree if it is a full binary tree? That is calculate $N(h)$, number of vertices for a full tree of height h, where $h \geq 0$.

$$
N(h)=\sum_{\ell=0}^{h} 2^{\ell}=\frac{1-2^{h+1}}{1-2}=2^{h+1}-1
$$

Exercise

What is the smallest number of nodes a binary tree with height h can have?

Imagine you had a full binary tree with height h, suppose at level ℓ, you select a node and remove it and all its children from the tree. How many nodes are left in the tree?

Imagine you had a full binary tree with height h. If you removed the top ℓ levels, how many full binary trees remain? And, how many nodes?

Note this exercise is new, so it is not solved in the videos.

Proof by induction on n (1)

Theorem

If a binary tree is full, except at the last level, and has $n \geq 1$ vertices, the height of the tree is $\left[\log _{2}(n)\right]$.

Base Case $P(1)$: A tree with 1 vertex has a height of 0 and $\log _{2}(1)=0$
Inductive Step $P(n) \Longrightarrow P(n+1)$: If a tree with n vertices where each level is full except for the last has a height of $\left\lfloor\log _{2}(n)\right\rfloor$, then a tree with $n+1$ vertices where each level is full except for the last has a height of $\left\lfloor\log _{2}(n+1)\right\rfloor$

Consider a tree T with $n+1$ vertices. If we remove the last vertex all the way to the right on the last level, we have a tree T^{\prime} with n vertices where everything except the last level is full. By applying the IH to T^{\prime}, we know that that T^{\prime} has a height of $\left\lfloor\log _{2}(n)\right\rfloor$.

What are the ways we can go from T to T^{\prime} by adding a vertex?

Induction on Binary Trees

We can apply induction to prove a property of binary trees, by either inducting on the number of vertices (n) or height (h):

- Number of vertices in the tree n :
- IH provides the property is true for all trees with n vertices, you must show it is also true with a tree with $n+1$ vertices.
- Note that when you remove a vertex (and edge) from a tree with $n+1$ vertices, you have a tree with n vertices and is applicable to the IH .
- You then need to consider the cases you can go from a tree to n vertices with $n+1$ vertices (or vice versa) and show the property is true.
- Height of the tree h :
- IH provides the property is true for all trees with h height, you must show it is also true with a tree with $h+1$ vertices
- Note that when you remove a level from a tree with height $h+1$, you have a tree with height h and is applicable to the IH .
- If you remove the top level, you have a two sub-trees with height h.

Proof by induction on $n(2)$

There are two cases: Either T^{\prime} is a full binary tree, or T^{\prime} is not a full binary tree.

- T^{\prime} is a full binary tree with n vertices. It has a height $h=\left\lfloor\log _{2}(n)\right\rfloor$ by IH . Since T^{\prime} is a full tree, adding a vertex to get T increases the height by 1 , so we must show that in this case the height of T is $h+1=\left\lfloor\log _{2}(n+1)\right\rfloor$

Consider that in T^{\prime} there are $n=2^{h+1}-1$ vertices as it is a full tree. Adding a vertex, $n+1=2^{h+1}$ thus $\log _{2}(n+1)=h+1$ and $\left\lfloor\log _{2}(n+1)\right\rfloor=h+1$, which is what is needed to be shown.

- T^{\prime} is not a full binary tree with n vertices with a $h=\left\lfloor\log _{2}(n)\right\rfloor$. Since it is not full tree, if we add a vertex to form T, there must be a space on the last level of T^{\prime} for it and the height of T will not increase. We must show that in this case the height of T is $h=\left\lfloor\log _{2}(n+1)\right\rfloor$,

Since T^{\prime} is not a full binary tree $2^{h}-1<n<2^{h+1}-1$ because it is between a height $h-1$ and h. When we add a vertex $2^{h}<n+1<2^{h+1}$, or $h<\log _{2}(n+1)<h+1$ when taking the \log base 2 . Thus $\left\lfloor\log _{2}(n+1)\right\rfloor=h$ as the floor function rounds down to h.

Proof by induction on $h(1)$

Theorem

If a binary tree T with height h and ℓ leaf vertices, then $\ell \leq 2^{h}$ (or equivalently $\log _{2} \ell \leq h$).

Base Case $P(0)$: A tree with height 1 has a single vertex that is a leaf vertex (and the root). So $\ell=1$ and $\log _{2}(1)=0 \leq 0$
(strong) Inductive Step $(\forall k \leq h, P(k)) \Longrightarrow P(h+1)$: If a binary tree T with height $k \leq h$ has $\ell \leq 2^{k}$ leaf vertices, then a binary tree T^{\prime} with height $h+1$ has $\ell^{\prime} \leq 2^{h+1}$ leaf vertices.

If we remove the root vertex from T with height $h+1$, we are left with (potentially) two sub trees T_{r} and T_{l} each with a height $h_{l} \leq h$ and $h_{r} \leq h$. We need to consider the cases of sub trees T_{r} and T_{l} and how they would be combined to prove something about T.

Proof by induction on $h(2)$

We consider three cases when remove the root vertex.

- Case left sub-tree: We have T_{I} (and an empty T_{r}). The height of T_{I} is h, and by the IH , the number of leaf nodes $\ell_{I} \leq 2^{h}$. If we add back in the root to get T^{\prime}, we have not added any more leaf nodes so it is the case that ℓ is unchanged. Then by transitive relationship $\ell^{\prime} \leq 2^{h} \leq 2^{h+1}$, and $\ell^{\prime} \leq 2^{h+1}$ which is what was to be shown
- Case right sub-tree: This is the same as the case above where T_{l} and T_{r} are swapped. This case is covered by the one above.

Cases of Binary Trees

Every binary tree can be described in 5 cases (or 3 if it is a full tree)

Since the height is greater than 0 (proven in the base case), we have three cases. Removing the root vertex gives us a left sub tree, a right sub tree, or both.

Proof by induction on h (3)

- Case right and left sub-tree: We have a T_{l} and T_{r} with heights of h_{l} and h_{r}. Since the height of T^{\prime} is $h+1$, then $h+1=\max \left(h_{l}, h_{r}\right)+1$ because if the two sub-trees were merged at the root, then the height would increase by one more than the max height of the sub-trees. That means $h_{l} \leq h$ and $h_{r} \leq h$ and thus T_{l} and T_{r} are subject to the IH .

The number of leaf vertices in the left sub-tree $\ell_{1} \leq 2^{h_{l}} \leq 2^{h}$ and right sub-tree $\ell_{r} \leq 2^{h_{r}} \leq 2^{h}$. If we merged the two trees into T^{\prime}, then the number of leafs does not change, so $\ell^{\prime}=\ell_{1}+\ell_{r}$.

As we are trying to show that $\ell^{\prime} \leq 2^{h+1}$ we can consider the maximum value of $\ell_{I} \leq 2^{h}$ and $\ell_{r}=2^{h}$. So $\ell^{\prime}=\ell_{I}+\ell_{r}=2^{h+1}$ when ℓ_{I} and ℓ_{r} are maximal, and so all other values off ℓ_{1} and ℓ_{r} would result in lesser values in their sums. Thus $\ell^{\prime} \leq 2^{h+1}$. Which is what we need to show.

Exercise

Prove by induction on the height of the tree, if you had a tree T of height $h \geq 1$ and removed 1 leaf node, the height of the resulting tree is at least $h-1$.

Note this exercise is new, so it is not solved in the videos.

