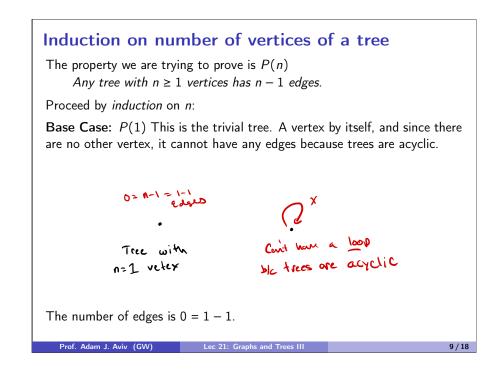
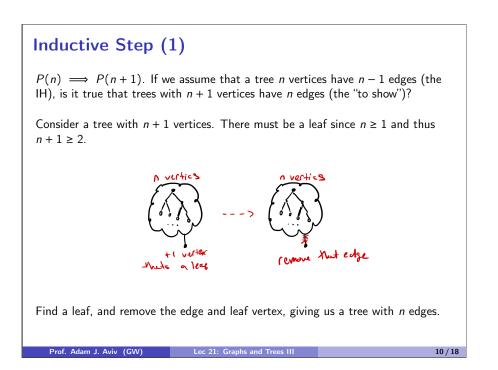
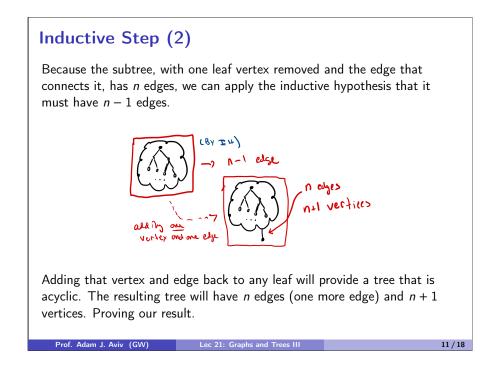


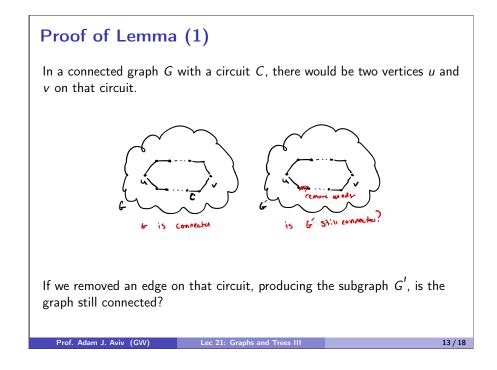
Number of edge	s in a tree	
Theorem For any positive integer	n, any tree with <i>n</i> vertices	has <i>n</i> – 1 edges.
How can we prove such induction on trees.	a result, for all trees with <i>r</i>	vertices? We can apply
	oply induction on trees? W e. Our induction hypothesi trees.	
Prof. Adam J. Aviv (GW)	Lec 21: Graphs and Trees III	8 / 18

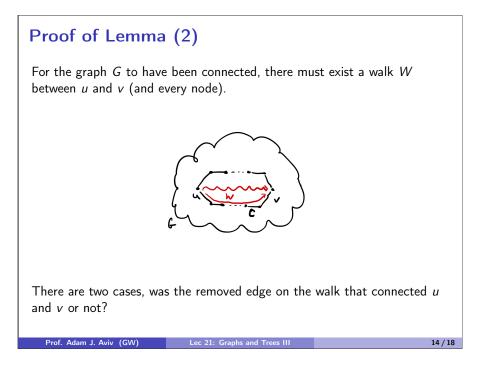


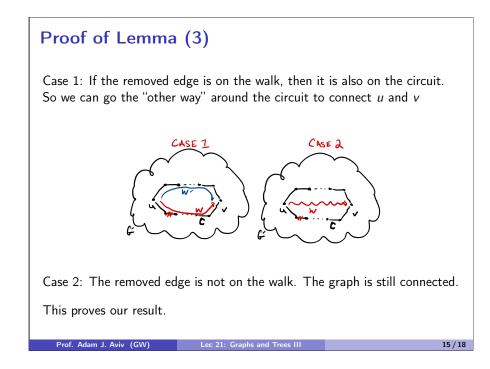


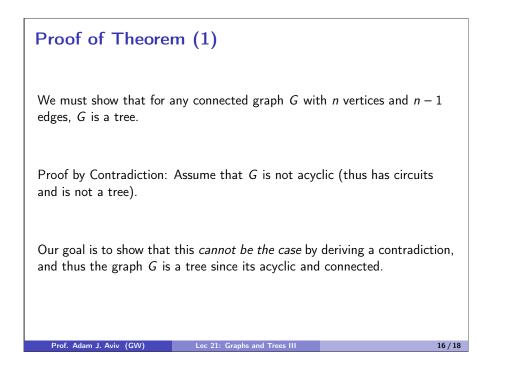


	and Trees	
Theorem		
5.	positive integer n , if G is a connected graph with n vertices and es , then G is a tree.	
-		
	nuch stronger theorem about the relationship between graphs First, though, we need to prove a lemma	









Proof of Theorem (2)	
Assuming G has circuits. We can apply the lemma, to remove an edge from the circuit producing the connected sub-graph G' .	
If G' has a circuit, we continue removing an edge from the sub-graph until we eventually reach a connected, acyclic graph G'' — that's a tree!	
Since G'' has <i>n</i> vertices (we only removed edges), then G'' has $n-1$ edges. Then G and G'' have the same number of edges (that was part of the premise of the theorem)	
BUT! To have reached G'' we had to remove edges from circuits, but G'' and G have the same number of edges — we didn't remove any edges to reach G'' .	
It must be the case that G didn't have cycles, thus it is acyclic and connected. It's a tree.	
Prof. Adam J. Aviv (GW) Lec 21: Graphs and Trees III 17/18	

Exercise
Is every graph with n vertices and $n - 1$ edges a tree? Provide a counter example.
Prove that if you remove an interior vertex from a tree (there are two or more edges incident on the vertex), you get a forest (a graph containing two or more trees).