Lec 20: Graphs and Trees II

Prof. Adam J. Aviv

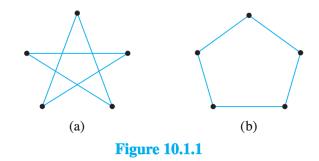
GW

CSCI 1311 Discrete Structures I Spring 2023

Graph Isomorphism

Recall that pictures are malleable

The following are the same graph

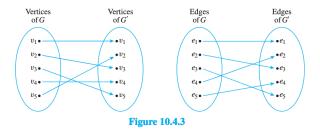


We say that the two graphs are isomorphic.

Isomorphic Graphs

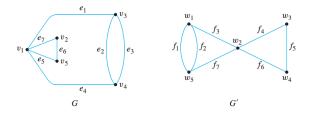
Definition

Let $G = \{E, V\}$ and $G' = \{E', V'\}$ be two graphs with edges and vertices. We say that G is isomorphic with G' if, and only if, there exists one-to-one correspondences $g : V \to V'$ and $h : E \to E'$, where h preserves the edge endpoints of E in E' based on the mapping of g.



Exercise

Show that two graphs are isomorphic using an arrow diagram



Isomorphism is an equivalence relation

Prove it!

- Reflexive: A graph G is isomorphic to itself by using the identity function for $g: V \to V$ and $h: E \to E$.
- Symmetric: If a graph G is isomorphic to graph G', then G' is isomorphic to G. The premise provides that there must exists one-to-one correspondence g and h between G and G'. As one-to-one correspondence functions, they must have an inverse g⁻¹ and h⁻¹ between G' and G which are also one-to-one correspondence functions.
- Transitive: If a graph G is isomorphic to graph G', and G' is isomorphic to G", then G is isomorphic to G". From the premise there are one-to-one correspondences g and h from G to G', and g' and h' from G' to G". Then the composition functions g o g' and h o h' are also one-to-one correspondence functions from G to G".

Invariant of Graph Isomorphism

Definition

A property P is call an invariant for graph isomorphism if, and only if, given any graphs G and G', if G has property P and G' is isomorphic to G, then G' has property P.

How many invariant properties can you name?

Invariants

- has n vertices
- has m edges
- has a vertex of degree k
- has *m* vertices of degree *k*
- has a circuit of length k

- has a simple circuit of length k
- has *m* simple circuits of length *k*
- is connected
- has an Euler circuit
- has a Hamiltonian circuit

Matrix Representation of Graphs

Matrix (review)

Recall that a matrix is a 2-dimensional representation of a sequence. For example, a $n \times m$ matrix, A can be written as

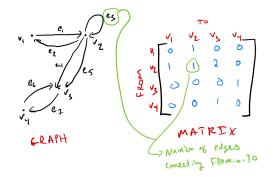
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

The notation a_{ij} , refers to the element at the *i*th row and *j*th column. The *i*th row of the matrix is $\begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix}$

The *j*th column of the matrix is $\begin{vmatrix} a_{1j} \\ a_{2j} \\ \vdots \end{vmatrix}$

Directed Graphs as a Matrix

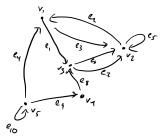
Consider the following graph, on the left.



We can write that as matrix (right) of $|V| \times |V|$, were each a_{ij} indicates the number of edges from v_i to v_j .

Exercise

Convert the following graph to a matrix.

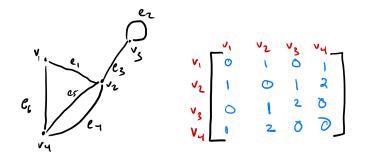


Convert the following matrix, to a graph.

Γ0	1	0	1	17	
2 1	1 0	1	1	0	
1	0	1 1 0 2	1 2 0	1 1	
0	0	0	0	1	
1	0	2	0	0	

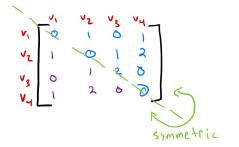
Un-directed graphs as matrix

We can use the same rules to represent an un-directed graph as a matrix



Matrix Symmetry

For a directed graph, the matrix representation is symmetric, $a_{ij} = a_{ji}$,



In an un-directed graph, an edge from v_i to v_i is also an edge from v_i to v_i

Dot Product

The scaler product or dot product of a row of matrix A with a column of matrix B, is the sum of the pairwise multiplication of each element in a row to the column.

$$\begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

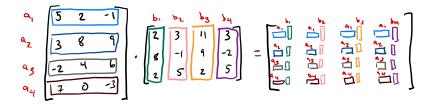
Note the number of elements in the row of A must equal the number of elements in the column of B.

Example Dot Product

$$\begin{bmatrix} 3 & 4 & -2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & (-1) \\ + \\ 4 & (2) \\ + \\ -2 & (3) \\ + \\ 2 & (2) \\ + \\ 2 & (2) \\ + \\ 2 & (2) \\ + \\ 2 & (2) \\ -2 & (2) \\ + \\ 2 & (2)$$

Matrix Multiplication

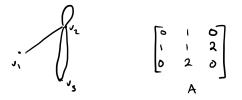
The multiplication of two matrices A and B is the row-by-column dot product.



Exercise: complete the matrix multiply above.

Graph Multiplication as way to compute walks

Consider the following graph and its matrix representation



How many walks of length 1 between each node? It's encoded in the matrix!

How many walks of length 2 between each node? Or circuits from v_2 ?

Squaring the Matrix

If we take the adjacency matric, squared. What does a value in it compute?

$$\begin{bmatrix} \circ & 1 & \circ \\ 1 & 1 & 2 \\ \circ & 2 & \circ \end{bmatrix} \begin{bmatrix} \circ & 1 & \circ \\ 1 & 1 & 2 \\ \circ & 2 & \circ \end{bmatrix} = v_2 \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$

$$A \qquad A \qquad = A^2$$

Look at a_{22} . The dot product represents the number of ways to get v_2 to another vertices multiplied by the way to get back to v_2

Walks of length 2

The number of walks of length 2, from v_2 and back to v_2 , is $6 = a_{22}^2$.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 6 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

$$A = A = A^{2}$$

The number of walks from v_3 to v_2 of length 2, is $2 = a_{32}^2$

$$q_{32}^{2} = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 2 \\ 2 \end{bmatrix} v_{1}^{2} v_{1} v_{1} v_{2}^{2} v_{2}^{2}$$

Go from v_3 to v_2 by either edge by one loop on v_2 . There is no way to get from v_3 to either v_1 (or in reverse) in one step. So they don't count.

Exercise

How many circuits of length 3 exist in the following graph?

Recall that a circuit is a walk that begins and ends on the same vertex