

Graphs

A graph is a represent information about relationships (or edges) which are represented by lines between elements (or vertices), represented by dots.

For example, the above graph represents students in a class, and the edges represent a relationship between students who have previously worked together on projects.

Prof. Adam J. Aviv (GW) Lec 19: Graphs and Trees I

Graphs Formally	
Definition	
A graph $G = \{V, E\}$ consists o the set of edges E .	f two finite sets, the set of vertices V and
For all $e \in E$, $e = (v_i, v_j)$ wher endpoints of the edge. An edge	$v_i \in V$ and $v_j \in V$, and v_i and v_j are the connects its endpoints.
-	an edge, the vertices are adjacent vertexes. int, or are incident on a vertex, are adjacent
If an edge has the same endpoi and is adjacent to itself.	nts, that is $v_i = v_j$, then the edge is a loop
To edges, say $e_1 = (v_i, v_j)$ and same end points $v_i = v_k \land v_j =$	$e_2 = (v_k, v_l)$, are parallel if they have the v_l (or $v_j = v_k \land v_i = v_l$)

3/32

Directed Graphs

Definition

A directed graph is a graph where the order of the endpoints for an edge matter. An edge $e \in E$, $e = (v_i, v_j)$ describes an edge directed from v_i to v_j , which is different and not parallel to the edge $f \in E$, $f = (v_j, v_i)$.

We typically use arrows for edges in directed graphs.

Subgraphs

Definition

A graph H is a subgraph of a graph G if, and only if, every vertex in H is also a vertex in G, every edge in H is also an edge in G, and ever edge in H has the same endpoints as it has in G.

Degree of a vertex

Definition

The degree of a vertex v, denoted deg(v), equals the number of edges that are incident on v, with an edge that is loop counted twice.

The total degree of G is the sum of the degrees of all the vertices of G.

Handshake theorem

Handshake theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice the number of edges in G

Why would this be true?

Proof.

For any edge in the graph, it is either a loop or a non-loop. If it is a loop it contributes 1 to each vertex it connects, and if it is a loop, it contributes 2. In either case, each edge contributes 2 degree. Thus the total degree of a graph is equal to twice the number of edges.

Corollary The total degree of a graph is even. Prof. Adam J. Aviv (GW) Lec 19: Graphs and Trees 1 12/32

Prof. Adam J. Aviv (GW)

Exercises Does there exists a simple graph where each vertex has even degree? Where each vertex has odd degree? Recall that K_n refers to a complete graph with *n* vertices, show that the number of edges of $edges(K_n) = \frac{n(n-1)}{2}$ Consider an acquaintance graph, where edges describe that two individuals (vertices) are friends. Is it possible in a group of 9 people for each to be friends with exactly five others?

Euler and Königsberg

The town of Königsberg in Prussia (now Kaliningradin Russia) was built at a point where two branches of the Pregel River came together. It consisted of an island and some land along the river banks. Is it possible for a person to take a walk around town, starting and ending at the same location and crossing each of the seven bridges exactly once?

Euler Trails

Like an Euler Circuit, we can instead consider Euler Trails where we start at a vertex v and end at a vertex w, while traversing every edge exactly once.

Corollary

Let G be a graph, and let v and wbe two distinct vertices of G. There is a Euler trail from v to w if, and only if, G is connected, v and w have odd degree, and all other vertices have positive degree

A & ENLOT CITCU repeat inti al elges us

Prof. Adam J. Aviv (GW)

Hamiltonian Circuits

Definition

Given a graph G, a Hamiltonioan circuit for G is a simple circuit that includes every vertex of G. That is, a Hamiltonian circuit for G is a sequence of adjacent vertices and distinct edges in which every vertex of G appears exactly once, except for the first and last, which are the same.

Lec 19: Graphs and Trees I

Euler Circuit

Hamiltonian Circuit

- Visit every edge exactly once.
- Visit every vertex at least once.
- Visit every vertex exactly once.
- Not all edges included.

29 / 32

Traveling Salesman Problem

Imagine a salesman that needs to travel between n cities without visiting a city twice and minimizing the distance travel while ending the journey back where it started. Which path should the salesman take?

Route	Total Distance (In Kilometers)
ABCDA	30 + 30 + 25 + 40 = 125
ABDCA	30 + 35 + 25 + 50 = 140
ACBDA	50 + 30 + 35 + 40 = 155
ACDBA	140 [ABDCA backwards]
ADBCA	155 [ACBDA backwards]
ADCBA	125 [ABCDA backwards]

Enumerate all Hamiltonian Circuits and choosing the smallest is still the best known algorithm to get a correct result¹. An important, well known *hard* problem in computer science.

¹ There are good approximation algorithms Prof. Adam J. Aviv (GW) Lec 19: Graphs and Trees

32 / 32