

Multiplication Rule and Factorials

The multiplication rule states that we can multiply the set of possible outcomes for a series of choices to get the total number of outcomes.

Example: Assume we have four elements, $\{A, B, C, D\}$, how many different ways can they be arranged (without repetition)?

There are 4 choices for the first element, 3 for the second, 2 for the third, and then just 1 for the last.

 $4 \cdot 3 \cdot 2 \cdot 1 = 4!$

3/24

Prof. Adam J. Aviv (GW) Lec 17: Prob. and Counting II

Factorial Definition The factorial of a number n, written n!, is $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$ And definition ally, 0! = 1. What is 0.4! 0.5!0

Permutations

Definition

A permutation of a subset of objects is the number of ways those objects can be arranged in a row.

Example

If there are 6 diplomats, and 4 seats around a table, how many different permutations are there for 6 diplomats to sit at the table where two diplomats stand?

$$6 \cdot 5 \cdot 4 \cdot 3 = 6!/2! = 360$$

6 diplomatic in the first seat, $5\ {\rm can}\ {\rm be}\ {\rm selected}\ {\rm for}\ {\rm the}\ {\rm second}\ {\rm seat},\ 4$ in the third, and 3 in the fourth.

Prof. Adam J. Aviv (GW)

Lec 17: Prob. and Counting II

r-Permutation

Definition

An *r*-permutation of a set of *n* elements is an ordered selection of *r* elements take from the set of *n* elements. The number of *r*-permutations of a set of *n* elements is denoted as P(n, r) or n P r, read "*n* permute *r*."

If *n* and *r* are integers and $1 \le r \le n$, the number of *r*-permutations of a set *n* elements is given by the formula:

$$P(n,r) = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-r+1)$$

or equivalently

$$P(n,r) = \frac{n!}{(n-r)!}$$

5/24

Example: PINs of multiple lengths

Suppose you want to count the number of 1-, 2-, 3-, and 4-length PINs selected from digits 0-9 without repetition?

Calculation at each length:

Prof. Adam J. Aviv (GW)

- 1-length: P(10, 1) = 10 = 10
- 2-length: $P(10, 2) = 10 \cdot 9 = 90$
- 3-length: $P(10,3) = 10 \cdot 9 \cdot 8 = 720$
- 4-length: $P(10, 4) = 10 \cdot 9 \cdot 8 \cdot 7 = 5040$

The total PINs of these lengths is the sum, 10 + 90 + 720 + 5040 = 5860

Lec 17: Prob. and Counting II

Addition Rule for Disjoint Sets Addition Rule Suppse a finite set A equals the union of k distinct mutually disjoint subsets $A_1, A_2, ..., A_k$, Then $N(A) = N(A_1) + N(A_2) + ... + N(A_k)$ Example: PINS of different lengths are disjoint sets. So to count them, we add up the lengths of each length.

9/24

Example: Counting PINs without repeated symbols

How many PINs of length 4 (with repetition) **do not** contain a repeated digit?

Consider the following:

- When there are **no repetitions** of digits, there are P(10, 4) = 5040 PINs
- When there are **repetitions** of digits, there are $10^4 = 10000$ PINs

If we **subtract** the number of PINs that **do not** have repeated digits from the total number of PINs, we are left with just the PINs that have **at least** on repeated digit.

10000 - 5040 = 4060 PINs with at least one repeated digit

<section-header><section-header>Probability of General Unions and IntersectionsRecall that a P(E), or the probability of E, is N(E)/N(S), that is, the
number of ways an event can occur divided by the size of the sample space.What if we had two kinds events, A and B:• Probability of A or B is the same as P(A ∪ B)
· P(A ∪ B) = P(A) + P(B) - P(A ∩ B)• Probability of A and B is the same as P(A ∩ B)
· P(A ∩ B) = P(A) + P(B) - P(A ∪ B)

Poker Hands

Recall that a deck of cards has 4 suites, each with 13 cards: A, 2, 3, ..., 10, J, Q, K. A poker hand is a selection of 5 cards selected at random. How big is the sample space of poker hands?

•
$$N(\text{poker-hands}) = \binom{52}{5} = 2598960$$

How many poker hands contain at least a pair? Two cards that are the same?

• P(at least one pair) = 1 - P(no-pair) = 1 - N(no-pair)/N(poker-hands)

•
$$N(\text{no-pair}) = \begin{pmatrix} 13\\5 \end{pmatrix}$$

• $(13) + (1) + ($

- P(at least one pair) = 1 1317888/2598960 = 1 0.507 = 0.493 = 49.3%
- Prof. Adam J. Aviv (GW) Lec 17: Prob. and Counting II

23 / 24

