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Congruence Modulo 3

Define the relation T on Z, such that forall integers m and n

mT n ⇐⇒ 3 | (m − n)

Show that T is reflexive, symmetric, and transitive, and is thus a
equivalence relation.
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Equivalence class modulo 3

Reflexive: mT m =⇒ 3 | (m −m) =⇒ 3 | 0 which is true

Symmetric: We must show that if mT n then n T m. By definition of
the relation and divides, mT n =⇒ 3 | (m− n). So there must exists
a k such that 3k = (m − n). If we multiply both sides by −1, then
3(−k) = n −m. Let k ′ = −k , and 3k ′ = (n −m) which means that
3 | (n −m) and n T m.

Transitive: We must show that if mT n and n T p then mT p. Using
the same argument as before, if mT n and n T p there must exists r
and s such that 3r = m − n and 3s = n − p. If we add those two
equations, 3r + 3s = m − n + n − p, and then 3(r + s) = m − p. Let
k = (r + s), and we have 3k = (m − p). So 3 | (m − p) and mT p.
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Modulo congruence

Definition
Let m and n be integers and let d be a positive integer. We say that m is
congruent to n modulo d and write

m ≡ n (mod d)

if, and only if,
d | (m − n)

More formally,

m ≡ n (mod d) ⇐⇒ d | (m − n)
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Modular Equivalences

If a,b, and n are integers with n > 1, we can desribe modular equivalence
of a and b modulo n in any of the following ways:

1 n | (a− b)

2 a ≡ b (mod n) (or a ≡n b)
3 ∃k , a = b + kn

4 a and b have the same (non-negative) remainder when divided by n

5 a mod n = b mod n
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Exercise: congruence modulo n is a equivalence
relation

For any integer n > 1, the congruence modulo n defines an equivalence
relation. Show that for any integer a and b, a ≡ b (mod n) is symmetric,
reflexive and transitive.

What are all the equivalence classes for congruence modulo n?
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Modular Arithmetic

Modular arithmetic is performing standard operations (addition,
subtraction, multiplication) under a modulo, and because of the small set
of equivalence classes, there are some interesting properties.

Modular Arithmetic
Let a, b, c , d and n be integers where n > 1. Suppose,

a ≡ c (mod n) ∧ b ≡ d mod n

Then
1 (a+ b) ≡ (c + d) (mod n)

2 (a− b) ≡ (c − d) (mod n)

3 ab ≡ cd (mod n)

4 am ≡ cm (mod n) for all integers m

Prof. Adam J. Aviv (GW) Lec 15: Modular Arithmetic 7 / 23

Equivalence under multiplication

Multiplication Equivalence

If a, b, c, d and n are integers with n > 1 and

a ≡ c (mod n) ∧ b ≡ d mod n

then ab ≡ cd (mod n)

Proof.

If a ≡ c (mod n) and b ≡n d (mod n) then exists r and s such that a = c + rn and
b = d + sn. So

ab = (c + rn)(d + sn)

= cd + crn + rn + rnsn

= cd + n(cr + r + rsn)

Let k = (cr + r + rsn), so ab = cd + nk. By definition of congruence modulo n,
ab ≡ cd (mod n)
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Exercise

Prove that

(a+ b) ≡ (c + d) (mod n)

(a− b) ≡ (c − d) (mod n)
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Multiplication before or after modulo

Corollary 1
Let a, b, and n are integers where n > 1, then

ab ≡ [(a mod n)(b mod n)] (mod n)

Corollary 2
Let a be an integer and m and n are integers where n > 1 and m ≥ 1, then

am ≡ [(a mod n)m] (mod n)
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Exercise

Compute the following results

(29 · 30) mod 5

(42 · 11)3 mod 4

178 mod 3
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GCD: Greatest Common Denominator

Definition
The greatest common denominator (or GCD) of two positive integers a and
b is largest integer value n such that n | a and n | b, and we would say that
the gcd(a, b) = n

Euclid’s algorithm for gcd(a, b):
1 Check if b is 0, if it is, then gcd(a, 0) = a and we’re done.
2 If b > 0, then let r = a mod b

3 Repeat (1), now computing gcd(b, r) (so a is b, and b is r)

Compute gcd(330, 156)
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Linear combination of integers

Definition
An integer d is said to be a linear combination of integers a and b if, and
only if, there exists integers s and t such that as + bt = d .

Theorem (GCD as a Linear Combination)

For all integers a and b, not both zero, if d = gcd(a, b), then there exists
integers s and t such that as + bt = d .
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Relative Prime and Linear Combinations

Definition
Two positive integers a and b are relatively prime if gcd(a, b) = 1. That is,
they share no common divisors.

Corollary: Linear Combination of Relative Primes
If a and b are relatively prime (that is gcd(a, b) = 1), then there exists
integers s and t such that as + bt = 1
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Inverse Modulo

Corollary: Existence of Inverse Modulo n

For all integers a and n, if gcd(a, n) = 1, then there exists an integer s such that
as ≡ 1 (mod n). The integer s is called the inverse of a modulo n.

Proof.

By Corollary of Linear Combinations of Relatively Primes, there exists a s and t such
that

as + nt = 1

as = 1 − nt

as = 1 + (−t)n

By definition of congruence modulo n

as ≡ 1 (mod n)
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Implications of Inverse Modulo

An inverse allows us to cancel out a value, like a−1 is the inverse of a. This
is critical operation for cryptography.

Note we can only guarantee that an inverse exists if value and the modulo
are relatively prime, but if the modulo is prime (or the product of two
primes) than it should be relatively prime with all numbers except itself (or
the two primes)

Find the inverse of the following numbers modulo 3
7
8
13
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RSA Cryptography

One of the most important discoveries in cryptography is based on
properties of modular arithmetic and modular inverses.

Rivest, Shamir, and Adleman.
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Asymmetric, Public Key Cryptography

Asymmetric (or Public Key) Cryptography is a cryptographic procedure by
which each party has a public encryption key that is known to every one
and a private decryption key that is secret to them.

If Alice wants to send a message to Bob, Alice would encrypt the message
with Bob’s public key and send the resulting cipher text to Bob who
decrypts the message using his private key.

The security is guaranteed by computational bounds. It is nearly impossible
to determine (compute) a private key given the public key.
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RSA Equations

Let p and q be primes, then we can find positive integers d and e such
that d is the inverse to e modulo (p − 1)(q − 1).

The public key is e and n = pq — note that we release n, the
multiplication of the two primes, but not the primes themselves.

The private key is d (the private exponent) and the values of p and q (the
prime pair).

C = Me mod pq︸ ︷︷ ︸
Encryption

M = Cd mod pq︸ ︷︷ ︸
Decryption
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Example RSA Encryption

Let’s label the English alphabet as A = 1,B = 2,C = 3, . . . ,Z = 26, and
public key is n = 55 and e = 3.

We can encrypt the message “HI” by encrypting each letters, “H”= 8 = M0
and “I”= 9 = M1.

C0 = 83 mod 55 = 256 mod 55 = 17

C1 = 93 mod n = 729 mod n = 14
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Example RSA decryption (1)

To decrypt we need the secret exponent d for p and q. In our example,
p = 11 and q = 5, so (p − 1)(q − 1) = 40. The positive inverse of e = 3 is
d = 27 modulo 40.

M0 = C 27
0 mod 55 = 1727 mod 55

This may seem really difficult to compute, but since its under a modulo, we
can solve it by taking successive powers.
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Example RSA decryption (2)

17 mod 55 = 17 mod 55 = 17
172 mod 55 = 172 mod 55 = 172 mod 55 = 14
174 mod 55 = (172 mod n)2 mod 55 = (14)2 mod 55 = 31
178 mod 55 = (174 mod n)2 mod 55 = (31)2 mod 55 = 26
1716 mod 55 = (178 mod n)2 mod 55 = (26)2 mod 55 = 16

1727 mod 55 = 1716+8+2+1 mod 55

= (1716 · 178 · 172 · 17) mod 55
= (16 · 26 · 14 · 17) mod 55
= ((16 · 26) mod 55) · ((14 · 17) mod 55) mod 55
= (31 · 18) mod 55
= 8 = “H”
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Exercise

Decrypt C1 = 14 with pq = 55 and d = 27.

Encrypt “GO” with pq = 55 and e = 3.
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