

Relations between sets

Relations, like functions, are a way to describe how elements in one set relate to elements in an another set.

Example

Let $A = \{0, 1, 2\}$ and $B = \{1, 2, 3\}$. Then $x \in A$ is related to $y \in B$ if, and only if, x < y. Symbolically

 $x R y \iff x < y$

Where x R y is read "x related to y."

Enumerate all pairs $(x, y) \in A \times B$ that are *in* the relation?

Prof. Adam J. Aviv (GW)

Relations as sets (and subsets)

Moreover, we can define the relation R as a set itself. Again, if R is a relation between two sets A and B and $x \in A$ and $y \in B$, then R can be defined such that:

$$x R y \iff (x, y) \in R$$

Definition

Prof. Adam J. Aviv (GW)

Let A and B be sets. Then a relation R from A to B is a subset of $A \times B$. Given pair $(x, y) \in A \times B$, x is related to y by R, written x R y, if, and only if, $(x, y) \in R$.

Lec 14: Relations I

3/17

The set A is the domain of R, and set B is the co-domain of R.

Equivalence Relations
Definition
Let A be a set and a R a relation on A . R is an equivalence relation if, and only if, R is reflexive, symmetric, and transitive.
Note that a relation is not an equivalence relation if there exists at least
one counterexample of reflexivity, symmetry, or transitivity.

Lec 14: Relations I

8/17

Prof. Adam J. Aviv (GW)

= as an equivalence relation
Proof.
For <i>R</i> to be reflexive, we must show that $\forall x \in \mathbb{R}, x R x$, or equivalently show that $x = x$, which is true for equality, so <i>R</i> is reflexive.
For <i>R</i> to be symmetric, we must show that $\forall x, y \in \mathbb{R}, x R y \implies y R x$, or equivalently, $x = y \implies y = x$, which is certainly true for equality of the reals, so <i>R</i> is symmetric.
For <i>R</i> to be transitive, we must show that
$\forall x, y, z \in \mathbb{R}, x R y \land y R z \implies x R z$, or equivalently, that if $x = y$ and $y = z$, then $x = z$, which is also true for equality of the reals, so R is transitive.
Thus R is a equivalence relation.
Prof. Adam J. Aviv (GW) Lec 14: Relations I 10 / 17

Exercises Are the following equivalence relations? Try to prove your result, and if they are not, which property is violated. Let *R* be the relation on \mathbb{Z}^+ such that $(\forall n, m \in \mathbb{Z}^+)(n R m \iff n | m)$ Let *S* be the relation on \mathbb{R} such that $(\forall x, y \in \mathbb{R})(x S y \iff xy \ge 0)$

Antisymmetry

Definition

Let R be a relation on set A. R is atisymmetric if, and only if, forall a and b in A, if a R b and b R a then a = b

More formally

R is antisymmetric $\iff (\forall a, b \in A)[(a R b \land b R a) \implies a = b]$

Contrapositive defines not antisymmetric

R is not antisymmetric $\iff (\exists a, b \in A)(a R b \land b R a \land a \neq b)$

13/17

Recall that $\neg(p
ightarrow q) \equiv p \land \neg q$

Prof. Adam J. Aviv (GW) Lec 14: Relations I

Example antisymetric relation: divides Let *R* be a relation over \mathbb{Z}^+ , and *a R b* if, and only if, *a* | *b*. *R* is antisymetric. Proof. Suppose that a R b and b R a, we must show that a = b. By definition of the relation a R b and b R a implies that $a R b \implies a \mid b \implies a = br$ for some positive integer r $b R a \implies b \mid a \implies b = as$ for some positive integer s Substituting for b in the first formula we have a = bra = (as)r1 = srSince s and r are positive integers, they must be 1. Substituting for r we have a = 1band thus d b = a. Is the relation R antisymmetric over the positive and negative integers? Prof. Adam J. Aviv (GW) Lec 14: Relations 14 / 17

Partial order relation

Definition

A relation R over a set A is a partial order relation if, and only if, R is reflexive, antisymmetric, and transitive.

Antisemitic ensures that we can create some chain of ordering over elements. For example, for the divides relation a R b if, and only if, $a \mid b$, we can say that $a \leq b$ if a R b, leading to various ordered chains factors, all ending at 1.

```
\begin{array}{c} 120 \succeq 10 \succeq 5 \succeq 1 \\ 100 \succeq 20 \succeq 4 \succeq 2 \succeq 1 \end{array}
```

We use the \leq and \succeq to indicate "less than or equal" or "greater than or equal" under the relation as not to be confused with the canonical less/greater than (\leq , \geq).

Lec 14: Relations I

15 / 17

Prof. Adam J. Aviv (GW)

Exercise Let \mathcal{A} be a collection of sets. Show that \subseteq is a partial ordering over \mathcal{A} , that is for sets a and b in \mathcal{A} , a R b if, and only if, $a \subseteq b$.

<section-header><section-header><section-header><section-header><text><text><text>

