Lec 14: Relations I

Prof. Adam J. Aviv

GW

CSCI 1311 Discrete Structures I Spring 2023

Relations between sets

Relations, like functions, are a way to describe how elements in one set relate to elements in an another set.

Example

Let $A=\{0,1,2\}$ and $B=\{1,2,3\}$. Then $x \in A$ is related to $y \in B$ if, and only if, $x<y$. Symbolically

$$
x R y \Longleftrightarrow x<y
$$

Where $x R y$ is read " x related to y."

Enumerate all pairs $(x, y) \in A \times B$ that are in the relation?

Relations as sets (and subsets)

Moreover, we can define the relation R as a set itself. Again, if R is a relation between two sets A and B and $x \in A$ and $y \in B$, then R can be defined such that:

$$
x R y \Longleftrightarrow(x, y) \in R
$$

Definition

Let A and B be sets. Then a relation R from A to B is a subset of $A \times B$. Given pair $(x, y) \in A \times B, x$ is related to y by R, written $x R y$, if, and only if, $(x, y) \in R$.

The set A is the domain of R, and set B is the co-domain of R.

Reflexive, Symmetric and Transitive

Let R be a relation on a set A :

- R is reflexive, if and only if, $\forall x \in A, x R x$
- All elements in A are related to themselves.
- R is symmetric if, and only if, $\forall x, y \in A, x R y \Longrightarrow y R x$
- For any x, y in A, if x is related to y, then y is related to x
- R is transitive, if, and only if,
$\forall x, y, z \in A, x R y \wedge y R z \Longrightarrow x R z$
- For any x, y, z in A, if x is related to y and y is related to z, then x is related to z.

Exercise

How would you define (formally) the inverse of
R is not reflexive if, and only if, ...
R is not symmetric if, and only if, ...
R is not transitive if, and only if, ...

Exercise

Let $A=\{0,1,2,3\}$ and define the relation R as

$$
R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}
$$

Is R reflexive? symmetric? transitive?

Direct graph depiction of relations

$$
R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}
$$

- Reflexive requires self loops for all elements in A
- Symmetry requires loops to exists between any related elements
- Transitivity requires closed connections between co-related terms. So there should be an arrow between 3-to-1 and from 1-to-3.

Equivalence Relations

Definition

Let A be a set and a R a relation on A. R is an equivalence relation if, and only if, R is reflexive, symmetric, and transitive.

Note that a relation is not an equivalence relation if there exists at least one counterexample of reflexivity, symmetry, or transitivity.

Example equivalence relation: $=$

Define R as a relation over the reals such that
$\forall x, y \in \mathbb{R}$

$$
x R y \Longleftrightarrow x=y
$$

Two items are in the relation if they are equal: is this an equivalence class?

That is, is R reflexive, symmetric and transitive?

$=$ as an equivalence relation

Proof.

For R to be reflexive, we must show that $\forall x \in \mathbb{R}, x R x$, or equivalently show that $x=x$, which is true for equality, so R is reflexive.

For R to be symmetric, we must show that $\forall x, y \in \mathbb{R}, x R y \Longrightarrow y R x$, or equivalently, $x=y \Longrightarrow y=x$, which is certainly true for equality of the reals, so R is symmetric.

For R to be transitive, we must show that
$\forall x, y, z \in \mathbb{R}, x R y \wedge y R z \Longrightarrow x R z$, or equivalently, that if $x=y$ and $y=z$, then $x=z$, which is also true for equality of the reals, so R is transitive.

Thus R is a equivalence relation.

Less than relation as equivalence?

Define the relation R over the reals as
$\forall x, y \in \mathbb{R}$

$$
x R y \Longleftrightarrow x<y
$$

Is the less than relation R an equivalent relation?

Exercises

Are the following equivalence relations? Try to prove your result, and if they are not, which property is violated.

Let R be the relation on \mathbb{Z}^{+}such that

$$
\left(\forall n, m \in \mathbb{Z}^{+}\right)(n R m \Longleftrightarrow n \mid m)
$$

Let S be the relation on \mathbb{R} such that

$$
(\forall x, y \in \mathbb{R})(x S y \Longleftrightarrow x y \geq 0)
$$

Antisymmetry

Definition

Let R be a relation on set A. R is atisymmetric if, and only if, forall a and b in A, if $a R b$ and $b R$ a then $a=b$

More formally
R is antisymmetric $\Longleftrightarrow(\forall a, b \in A)[(a R b \wedge b R a) \Longrightarrow a=b]$

Contrapositive defines not antisymmetric
R is not antisymmetric $\Longleftrightarrow(\exists a, b \in A)(a R b \wedge b R a \wedge a \neq b)$
Recall that $\neg(p \rightarrow q) \equiv p \wedge \neg q$

Example antisymetric relation: divides

Let R be a relation over \mathbb{Z}^{+}, and $a R b$ if, and only if, $a \mid b . R$ is antisymetric.

Proof.

Suppose that $a R b$ and $b R$, we must show that $a=b$. By definition of the relation $a R b$ and $b R$ a implies that
$a R b \Longrightarrow a \mid b \Longrightarrow a=b r$ for some positive integer r
$b R a \Longrightarrow b \mid a \Longrightarrow b=a s$ for some positive integer s
Substituting for b in the first formula we have

$$
\begin{aligned}
& a=b r \\
& a=(a s) r \\
& 1=s r
\end{aligned}
$$

Since s and r are positive integers, they must be 1 . Substituting for r we have $a=1 b$ and thus $\mathrm{d} b=a$.

Is the relation R antisymmetric over the positive and negative integers?

Partial order relation

Definition

A relation R over a set A is a partial order relation if, and only if, R is reflexive, antisymmetric, and transitive.

Antisemitic ensures that we can create some chain of ordering over elements. For example, for the divides relation $a R b$ if, and only if, $a \mid b$, we can say that $a \preceq b$ if $a R b$, leading to various ordered chains factors, all ending at 1 .

$$
\begin{aligned}
& 120 \succeq 10 \succeq 5 \succeq 1 \\
& 100 \succeq 20 \succeq 4 \succeq 2 \succeq 1
\end{aligned}
$$

We use the \preceq and \succeq to indicate "less than or equal" or "greater than or equal" under the relation as not to be confused with the canonical less/greater than (\leq, \geq).

Exercise

Let \mathcal{A} be a collection of sets. Show that \subseteq is a partial ordering over \mathcal{A}, that is for sets a and b in $\mathcal{A}, a R b$ if, and only if, $a \subseteq b$.

Total Ordering

In partial ordering, it is possible to find two elements a and b that are not related. For example, in the divides relation, $a \nmid b$ would not be in the relation, and thus a and b could not be ordered.

Definition

A partial order relation R on set A is a total order relation if for any two elements a and b either $a R b$ or $b R a$.

Example: The less than relation $a \leq b$ is a total order relation.

