

Pigeonhole Principle
Theorem (Pigeonhole Principle)
Let n and k be positive integers. When placing n objects (or pigeons) into k boxes (or pigeonholes), if $n > k$ then at least one box must contain more than one object.
Proof
Proof by contraposition. We can show that: If all k boxes contain at most one object, then $k \leq n$.
Observe that the max number of objects n is the same as the number of boxes k since there is at most one per box. It is the case $k \le n$.
By the contrapositive, we conclude the theorem is true.

Pigoenholes and onto and one-to-one functions

Consider the two sets, $A = \{1, 2, 3\}$ and $B = \{w, x, y, z\}$

- Is it possible to find an one-to-one function from A to B?
- Is it possible to find an onto function from A to B?
- One-to-one: Pigeon hole principle with A being pigeons and B being pigeonholes. A counter example must exists when |A| > |B|.
- Onto: Pigeon hole principle with *B* being pigeons and *A* being pigeonholes. A counter example must exists when |B| > |A|.

What about a one-to-one correspondence?

Cardinality and One-to-one Correspondence Functions

A one-to-one correspondence functions domain must be the same size as the co-domain, otherwise it would either not be onto or not one-to-one. This provides a way to reason about the cardinality of infinite sets.

Definition

Let A and B be any sets. A has the same cardinality as B if, and only if, there exists a one-to-one correspondence from A to B

 \forall sets A and B

 $|A| = |B| \iff (\exists f : A \rightarrow B)(f \text{ is a one-to-one correspondence})$

Prof. Adam J. Aviv (GW)

Lec 13: Functions II

Proving Reflexive Property

Definition

The identify function $I_A : A \to A$ is a function such that forall $a \in A$, $I_A(a) = a$.

Example: Here are two identity functions for $\ensuremath{\mathbb{R}}$

• g(x) = x + 0

Prof. Adam J. Aviv (GW)

• $h(x) = x \cdot 1$

Is the identity function of a set a one-to-one correspondence?

Identity functions are one-to-one correspondences

Lec 13: Functions II

Proof.

The identity function I_A is one-to-one because if $I_A(x_1) = I_A(x_2)$, then $x_1 = x_2$ because $I_A(x) = x$ for all inputs.

The identify function I_A is a onto because if we assume that u is in the co-domain, then we can always find v in the domain such that $I_A(v) = u$. The example is when u = v because then $I_A(v) = v$ and v = u.

So, cardinality is reflexive (|A| = |A|) because the identity function I_A is a one-to-one corresponds between A and A.

Proving symmetry of cardinality

If we assume that |A| = |B| then there exists a one-to-one correspondence function f between A and B, then there exists a inverse function f^{-1} between B and A because all one-to-one correspondence functions are invertabl e.

We need to show that, if $f : A \to B$ and f is a one-to-one correspondence, and $f^{-1} : B \to A$ is the inverse function from B to A, then f^{-1} is also a one-to-one correspondence?

Lec 13: Functions II

9/29

Inverse of a one-to-one correspondence is also

one-to-one correspondence Recall the definition of a function and its inverse:

Prof. Adam J. Aviv (GW)

 $f^{-1}(y) = x \iff f(x) = y$

Proof.

f⁻¹ is one-to-one. We must show that if $f^{-1}(y_1) = f^{-1}(y_2)$ then $y_1 = y_2$. Let $x = f^{-1}(y_1) = f^{-1}(y_2)$, then by definition of the inverse function, we have $x = f^{-1}(y_1) \implies f(x) = y_1$ $x = f^{-1}(y_2) \implies f(x) = y_2$ So $f(x) = y_1$ and $f(x) = y_2$ so $y_1 = y_2$ f^{-1} is onto. Let x be in the co-domain f^{-1} , we must show that there exists a $y = f^{-1}(x)$. By definition of the inverse function, f(x) = y and so we can find a y such that $f^{-1}(x) = y$

Transitivity and composition of functions

Definition

Let $f: X \to Y'$ and $g: Y' \to Z$ be functions, then $g \circ f: X \to Z$ is the composition of f and g

$$(g \circ f)(x) = g(f(x))$$

Example, f(x) = x + 1 and $g(n) = n^2$ both be functions from $\mathbb{Z} \to \mathbb{Z}$, then

$$g \circ f = g(f(x)) = (x+1)^2$$

and

$$f \circ g = f(g(n)) = n^2 + 1$$

 Prof. Adam J. Aviv (GW)
 Lec 13: Functions II
 11/29

Composition of one-to-one functions

If $f: X \to Y$ and $g: Y \to Z$ are both one-to-one, then $g \circ f$ is one-to-one.

Proof.

We must show that if $(g \circ f)(x_1) = (g \circ f)(x_2)$ then $x_1 = x_2$. Then by definition of composition of functions

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

 $g(f(x_1)) = g(f(x_2))$

Because g is one-to-one, that is $g(z_1) = g(z_2)$ implies $z_1 = z_2$, we can reduce to $f(x_1) = f(x_2)$

But also f is one-to-one, so by the same argument $x_1 = x_2$, which is what we must show.

Lec 13: Functions II

Prof. Adam J. Aviv (GW)

Composition of onto functions

If $f: X \to Y$ and $g: X \to Z$ are both onto, then $g \circ f$ is onto.

Proof.

If $z \in Z$, then we must show there exists an $x \in X$ such that $(g \circ f)(x) = z$.

By definition of composition $(g \circ f)(x) = g(f(x))$, and since g is onto, we know there exists a $z \in Z$ for which g(y) = z.

Since f is also onto, we know there exists an $x \in X$ such that y = f(x). And hence there exists an x such that

$$(g \circ f)(x) = g(f(x)) = g(y) = z$$

So $(g \circ f)(x)$ is onto.

Composition of one-to-one correspondence functions

If $f : X \to Y$ and $g : X \to Z$ are both one-to-one correspondence, then $g \circ f$ is one-to-one correspondence.

This is true based on our two prior results: the composition of onto functions is onto, and the composition of one-to-one functions is one-to-one. Thus, the composition of two one-to-one correspondence functions is also one-to-one correspondence.

Lec 13: Functions II

How does this result prove transitivity of cardinality?

Prof. Adam J. Aviv (GW)

Transitivity of Cardinality If A has the same cardinality as B, and B has the same cardinality as C, then A has the same cardinality as C. **Proof.** If A and B has the same cardinality, then there exist a one-to-one correspondence function $f : A \rightarrow B$, and the same for B and C, there exists a one-to-one correspondence function $g : B \rightarrow C$. The composition $f \circ g$ is also a one-to-one correspondence with domain A and co-domain C, thus A and C also have the same cardinality.

Prof. Adam J. Aviv (GW)

Set	of Eve	n In	tege	rs							
Consi	der the fur	nctior	$f:\mathbb{Z}^{d}$	$ ightarrow 2\mathbb{Z},$ i	f(n) = 1	2 <i>n</i> :					
	(ℤ)		-3	-2	-1	0	1	2	3		
			\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		
	f(n) = 2n		$-3\cdot 2$	$-2\cdot 2$	$-1\cdot 2$	0 · 2	$1\cdot 2$	2 · 2	3 · 2		
			\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		
	(2ℤ)		-6	-4	-2	0	2	4	6		
<mark>ls f</mark> c cardii	ne-to-one nality as th	and o e set	onto? Y of <i>all</i> i	′es! So ntegers	the set , and bo	of ev oth ar	en int e of ir	egers ıfinite	has tł size.	ne same	

Cantor's Diagnolization (2)

The number 0.12112... is defined such that each digit is 1 if the diagonal is *not* 1, and 2 if it is 1. Then, that number will *always* differ from every number on the list at the diagonal, a_n^n .

Cardinality of th	e reals (2)	
Proof (cont.)		
Construct a new number d =	$= 0.d_1d_2d_3\ldots d_n\ldots$ where	
	$d_n = egin{cases} 1 & ext{if } a_n^n eq 1 \ 2 & ext{if } a_n^n = 1 \end{cases}$	
Then for all digits $d_k \neq a_k^k$ for contradiction.	or all rows of the list, and thus	<i>d</i> cannot be in the list: a
Thus the set of real number	s between 0 and 1 are not coun	table.
The implication is that because we can't count	$ \mathbb{Z}^+ =\infty$ and $ [0,1] =\infty$ the reals using the positive	, but $ [0,1] > \mathbb{Z}^+ $ integers.
Prof. Adam J. Aviv (GW)	Lec 13: Functions II	26 / 29

Continuum Hypo	thesis and \aleph_0	
Is $ \mathbb{R} > [0,1] $?		
Continuum hypothesis		
There is no set whose car and the real numbers.	dinality is strictly betweer	n that of the integers
Symbolically, \aleph_0 is the "sr of real numbers is c (the the next infinite class (ab <i>This is one of the great u</i> <i>Gregor Cantor in</i> 1878	nall" infinite (countable) a continuum). The questior ove small) already reaches nproven hypothesis in ma	and the "large" infinite n is, does $\aleph_1 = c$, as in s the continuum. thematics, as stated by

