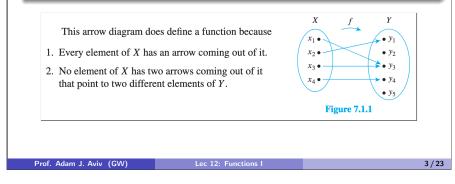


# Mathematical Definition of Functions

#### Definition

A function is a relation between two sets, written as  $f : X \to Y$ , where X is the set of inputs (or the domain) and Y is the set of possible outputs Y (the co-domain), that satisfies two properties:

- every element in X is related to some element in Y
- no element in X is related to more than one element in Y



## Range/Image and Inverse-Image/Pre-Image of f

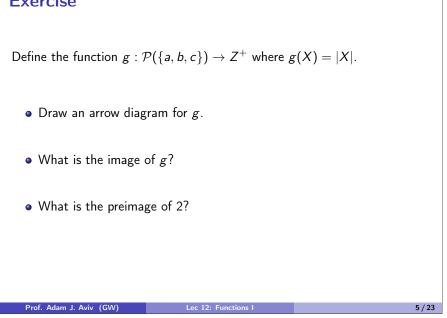
Range (or Image of X under f) is the set of  $y \in Y$  such that there exists an  $x \in X$  that f maps x to y (or  $x \rightarrow^{f} y$ ).

image of 
$$y = \{y \in Y \mid \exists x \in X \text{ s.t. } f(x) = y\}$$

Inverse image of  $y \in Y$  (or preimage) is the set of  $x \in X$  for which  $x \to^f y$ 

preimage of 
$$y = \{x \in X \mid f(x) = y\}$$

## Exercise



# Thinking of a function as a set (or relation)

Another way to think about functions is as a set of input and output pairs. For example, in the function  $f : X \to Y$ , we could also define:

$$f = \{(x, y) \mid f(x) = y\}$$

Which provides the following biconditional,

$$(x,y) \in f \iff (\exists x \in X)(\exists y \in y)(y = f(x))$$

Additionally,  $f \subseteq X \times Y$ 

6 / 23

## Equivalence of Functions

Theorem (Test for function equivalence)

 $F: X \rightarrow Y$  and  $G: X \rightarrow Y$  are (set) equivalent F = G if, and only if,  $\forall x \in X, F(x) = G(x)$ 

### Proof.

Note that  $F \subseteq X \times Y$  and  $G \subseteq X \times Y$ . •  $\Leftarrow$ : Suppose  $\forall x \in X, F(x) = G(x)$ , show that F = GIf  $(x, y) \in F$ , then y = F(x), and also if y = G(x) then  $(x, y) \in G$ . Fand G contain the same elements, and are thus set equivalent. •  $\Rightarrow$ : Suppose that F = G, show that  $\forall x \in X, F(x) = G(x)$ If F and G contain the same elements, then for all  $(x, y) \in F$ , F(x) = y and also  $(x, y) \in G, G(x) = y$ . So  $\forall x \in X, G(x) = F(x)$ .

| Exercise                                                                     |                                    |                             |        |  |
|------------------------------------------------------------------------------|------------------------------------|-----------------------------|--------|--|
| Let $F: \{0, 1, 2, 3, 4\} \rightarrow \cdot$                                 | $\{0, 1, 2\}$ and $G: \{0, 1, 2\}$ | $[0,1,2,3,4] \to \{0,1,2\}$ | 2}, if |  |
| $F(x) = (x^2 + x + 1)$                                                       | mod 3 and                          | $G(x) = (x+2)^2$            | mod 3  |  |
| show that $F = G$<br>Hint: this would be like a truth table with more inputs |                                    |                             |        |  |
|                                                                              |                                    |                             |        |  |
|                                                                              |                                    |                             |        |  |
|                                                                              |                                    |                             |        |  |
| Prof. Adam J. Aviv (GW)                                                      | Lec 12: Functions                  |                             | 8/23   |  |

## **One-to-one functions**

### Definition

A function  $f : X \to Y$  is one-to-one (or injective) if, and only if, for all elements  $x_1$  and  $x_2$  in X,

$$f(x_1) = f(x_2) \implies x_1 = x_2$$

Or equivalently by the contrapositive

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

We can write this symbolically as

$$f: X \to Y$$
 is one-to-one  $\iff (\forall x_1, x_2 \in X)(f(x_1) = f(x_2) \implies x_1 = x_2)$ 

Lec 12: Functions I

9/23

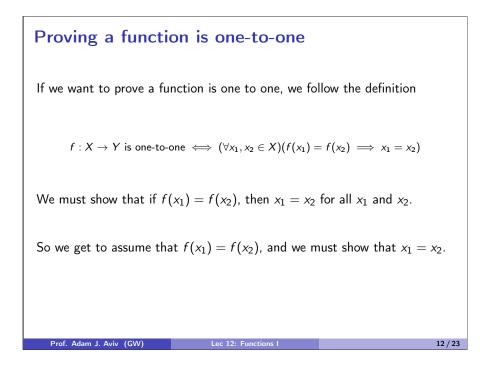
10 / 23

Prof. Adam J. Aviv (GW)

# What is definition of not one-to-one? What is the contrapositive? $f: X \to Y$ is one-to-one $\iff (\forall x_1, x_2 \in X)(f(x_1) = f(x_2) \implies x_1 = x_2)$ Finding the contrapositive of a biconditional: $p \leftrightarrow q \equiv (p \rightarrow q) \land (p \leftarrow q)$ $\equiv (\neg q \rightarrow \neg p) \land (\neg q \leftarrow \neg p)$ $\equiv \neg q \leftrightarrow \neg p$ $\equiv \neg p \leftrightarrow \neg q$ Applying that to our statement, we find that: $f: X \to Y$ is **not** one-to-one $\iff \neg[(\forall x_1, x_2 \in X)(f(x_1) = f(x_2) \implies x_1 = x_2)]$ $\iff (\exists x_1, x_2 \in X) \neg [(f(x_1) = f(x_2) \implies x_1 = x_2)]$ $\iff (\exists x_1, x_2 \in X)(f(x_1) = f(x_2) \land x_1 \neq x_2)$ ... when there exists $x_1$ and $x_2$ , s.t. $f(x_1) = f(x_2)$ but $x_1 \neq x_2$ . Lec 12: Functions I Prof. Adam J. Aviv (GW)

## Exercise

Consider  $A = \{1, 2, 3\}$  and  $B = \{w, x, y, z\}$  and possible functions below. Are these functions well-defined and if so, are they one-to-one?  $f = \{(1, w), (2, x), (3, x), (3, z)\}$   $g = \{(1, w), (2, x), (3, x)\}$   $h = \{(1, w), (2, x), (3, z)\}$ How many one-to-one functions exist between A and B?



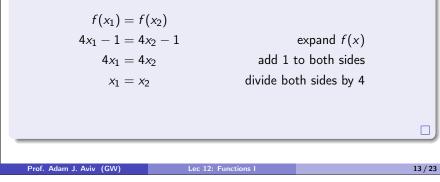
## Example proving one-to-one

### Theorem

 $f: \mathbb{R} \to \mathbb{R}, f(x) = 4x - 1$  is one-to-one

### Proof.

We must show that  $x_1 = x_2$  for all  $x_1, x_2 \in \mathbb{R}$  whenever  $f(x_1) = f(x_2)$ . Prove this directly, starting with  $f(x_1) = f(x_2)$ 



# Exercise

Prove that the following are one-to-one, or provide a counter example.

 $f:\mathbb{Z}\to\mathbb{Z}, f(x)=x^2$ 

 $g:\mathbb{Z}\to\mathbb{Z},g(x)=x^3$ 

$$h: \mathbb{R}^+ \to \mathbb{Z}^+, h(x) = \lfloor x \rfloor$$

 $\lfloor \cdot \rfloor$  is the floor function, it lowers any real number to the smallest integer value less than that number. For example,  $\lfloor 7.75 \rfloor = 7$  and  $\lfloor -3.2 \rfloor = -4$ 

Prof. Adam J. Aviv (GW)

## **Onto Functions**

Prof. Adam J. Aviv (GW)

#### Definition

A function  $f : X \to Y$  is onto (or surjective) if, and only if, given any element  $y \in Y$ , it is possible to find an element  $x \in X$  such that f(x) = y.

We can write this symbolically as

 $f: X \to Y$  is onto  $\iff (\forall y \in Y)(\exists x \in X)(f(x) = y)$ 

The contrapositive reveals a definition for not onto

 $f: X \to Y$  is not onto  $\iff (\exists y \in Y)(\forall x \in X)(f(x) \neq y)$ 

Lec 12: Functions I

## Proving something is onto (or not onto)

If we wanted to show some function is onto, we can follow the definition

 $f: X \to Y \text{ is onto } \iff (\forall y \in Y)(\exists x \in X)(f(x) = y)$ 

We would need to provide an example (or formula for) x such that f(x) = y for all y.

If we wanted to show that something is **not** onto, again following the definition.

 $f: X \to Y$  is not onto  $\iff (\exists y \in Y)(\forall x \in X)(f(x) \neq y)$ 

We can find a counter example y for which there is no corresponding x where f(x) = y

15/23

# Example proof

### Theorem

 $f: \mathbb{R} \to \mathbb{R}, f(x) = 4x - 1$  is onto

### Proof.

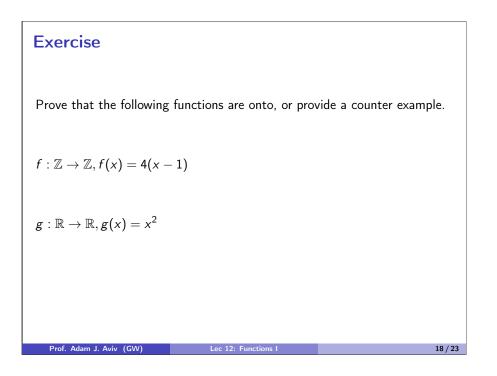
Assume that  $y \in \mathbb{R}$ , we must find a  $x \in \mathbb{R}$  where f(x) = y. Let's assume x exists for every y, then

y = 4x - 1 $\frac{y + 1}{4} = x$ The formula for  $x = \frac{y + 1}{4}$  always provides real number. If we apply it to f(x)

$$f(x) = f\left(\frac{y+1}{4}\right) = 4\left(\frac{y+1}{4}\right) - 1$$
$$= y + 1 - 1 = y$$

You always get y, thus this formula for an x can produce any y.

| Prof. Adam J. Aviv (GW) | Lec 12: Functions I | 17 / 23 |
|-------------------------|---------------------|---------|



## **One-to-one Correspondence Functions**

## Definition

A one-to-one correspondence (or bijection) from set X to Y is a function  $f: X \to Y$  that is both one-to-one and onto.

### Example

The function  $f : \mathbb{R} \to \mathbb{R}$ , f(x) = 4x - 1 is one-to-one and onto, and is thus a bijection of the real numbers (or a one-to-one correspondence function)



Example of one-to-one Correspondence Functions

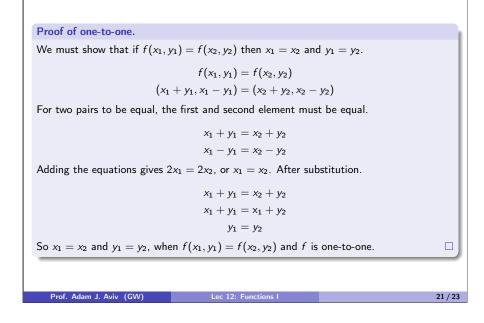
Prove that

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}, f(x, y) = (x + y, x - y)$$

is a one-to-one correspondence function.

We must prove that the function is both one-to-one and onto.

# Proof of one-to-one



| Proof of onto                                                                                                                                                                                                                         |                   |         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|--|--|
| Proof of onto.                                                                                                                                                                                                                        |                   |         |  |  |
| Assume that $(u, v)$ is in the co-domain of $f$ , we must show that there exists input $(r, s)$ such that $f(r, s) = (u, v)$ . If we let $r = \frac{u+v}{2}$ and $s = \frac{u-v}{2}$ then.                                            |                   |         |  |  |
| $f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) = \left(\frac{u+v}{2} + \frac{u-v}{2}, \frac{u+v}{2} - \frac{u-v}{2}\right)$ $= \left(\frac{u+v+u-v}{2}, \frac{u+v-u+v}{2}\right)$ $= \left(\frac{2u}{2}, \frac{2v}{2}\right)$ $= (u, v)$ |                   |         |  |  |
| So for any $(u, v)$ in the co-domain, we can find an input $(r, s)$ , and thus $f$ is onto.                                                                                                                                           |                   |         |  |  |
|                                                                                                                                                                                                                                       |                   |         |  |  |
| Prof. Adam J. Aviv (GW) Le                                                                                                                                                                                                            | : 12: Functions I | 22 / 23 |  |  |

# **Inverse Function**

If a function  $f: X \to Y$  is a one-to-one correspondence, then there must exist an inverses function  $f^{-1}: Y \to X$ 

$$f^{-1}(y) = x \iff y = f(x)$$

Why would a function that is just onto or one-to-one, but not both, not have an inverse function?

What is the inverse function for  $f : \mathbb{R} \to \mathbb{R}, f(x) = 4x - 1$ ?

Prof. Adam J. Aviv (GW)

Lec 12: Functions I

23 / 23

