Lec 12:
 Functions I

Prof. Adam J. Aviv

GW

CSCI 1311 Discrete Structures I Spring 2023

Functions

You've been exposed to many different kinds of functions:

- Functions in programming contain code segments with clear input and output.
- Functions in continuous forms, i.e, continuous functions in the Cartesian plane. Such as $f(x)=x^{2}+2 x+1$.

Mathematical Definition of Functions

Definition

A function is a relation between two sets, written as $f: X \rightarrow Y$, where X is the set of inputs (or the domain) and Y is the set of possible outputs Y (the co-domain), that satisfies two properties:

- every element in X is related to some element in Y
- no element in X is related to more than one element in Y

This arrow diagram does define a function because

1. Every element of X has an arrow coming out of it.
2. No element of X has two arrows coming out of it that point to two different elements of Y.

Figure 7.1.1

Range/Image and Inverse-Image/Pre-Image of f

Range (or Image of X under f) is the set of $y \in Y$ such that there exists an $x \in X$ that f maps x to y (or $x \rightarrow^{f} y$).

$$
\text { image of } y=\{y \in Y \mid \exists x \in X \text { s.t. } f(x)=y\}
$$

Inverse image of $y \in Y$ (or preimage) is the set of $x \in X$ for which $x \rightarrow^{f} y$

$$
\text { preimage of } y=\{x \in X \mid f(x)=y\}
$$

Exercise

Define the function $g: \mathcal{P}(\{a, b, c\}) \rightarrow Z^{+}$where $g(X)=|X|$.

- Draw an arrow diagram for g.
- What is the image of g ?
- What is the preimage of 2 ?

Thinking of a function as a set (or relation)

Another way to think about functions is as a set of input and output pairs. For example, in the function $f: X \rightarrow Y$, we could also define:

$$
f=\{(x, y) \mid f(x)=y\}
$$

Which provides the following biconditional,

$$
(x, y) \in f \Longleftrightarrow(\exists x \in X)(\exists y \in y)(y=f(x))
$$

Additionally, $f \subseteq X \times Y$

Equivalence of Functions

Theorem (Test for function equivalence)
$F: X \rightarrow Y$ and $G: X \rightarrow Y$ are (set) equivalent $F=G$ if, and only if, $\forall x \in X, F(x)=G(x)$

Proof.

Note that $F \subseteq X \times Y$ and $G \subseteq X \times Y$.

- \Leftarrow Suppose $\forall x \in X, F(x)=G(x)$, show that $F=G$

If $(x, y) \in F$, then $y=F(x)$, and also if $y=G(x)$ then $(x, y) \in G . F$ and G contain the same elements, and are thus set equivalent.

- \Rightarrow : Suppose that $F=G$, show that $\forall x \in X, F(x)=G(x)$

If F and G contain the same elements, then for all $(x, y) \in F$, $F(x)=y$ and also $(x, y) \in G, G(x)=y$. So $\forall x \in X, G(x)=F(x)$.

Exercise

Let $F:\{0,1,2,3,4\} \rightarrow\{0,1,2\}$ and $G:\{0,1,2,3,4\} \rightarrow\{0,1,2\}$, if

$$
F(x)=\left(x^{2}+x+1\right) \quad \bmod 3 \quad \text { and } \quad G(x)=(x+2)^{2} \quad \bmod 3
$$

show that $F=G$

Hint: this would be like a truth table with more inputs

One-to-one functions

Definition

A function $f: X \rightarrow Y$ is one-to-one (or injective) if, and only if, for all elements x_{1} and x_{2} in X,

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
$$

Or equivalently by the contrapositive

$$
x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

We can write this symbolically as
$f: X \rightarrow Y$ is one-to-one $\Longleftrightarrow\left(\forall x_{1}, x_{2} \in X\right)\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}\right)$

What is definition of not one-to-one?

What is the contrapositive?

$$
f: X \rightarrow Y \text { is one-to-one } \Longleftrightarrow\left(\forall x_{1}, x_{2} \in X\right)\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}\right)
$$

Finding the contrapositive of a biconditional:

$$
\begin{aligned}
p \leftrightarrow q & \equiv(p \rightarrow q) \wedge(p \leftarrow q) \\
& \equiv(\neg q \rightarrow \neg p) \wedge(\neg q \leftarrow \neg p) \\
& \equiv \neg q \leftrightarrow \neg p \\
& \equiv \neg p \leftrightarrow \neg q
\end{aligned}
$$

Applying that to our statement, we find that:

$$
\begin{aligned}
& \hline f: X \rightarrow Y \text { is not one-to-one } \\
& \Longleftrightarrow \neg\left[\left(\forall x_{1}, x_{2} \in X\right)\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}\right)\right] \\
& \Longleftrightarrow\left(\exists x_{1}, x_{2} \in X\right) \neg\left[\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}\right)\right] \\
& \Longleftrightarrow\left(\exists x_{1}, x_{2} \in X\right)\left(f\left(x_{1}\right)=f\left(x_{2}\right) \wedge x_{1} \neq x_{2}\right)
\end{aligned}
$$

\ldots when there exists x_{1} and x_{2}, s.t. $f\left(x_{1}\right)=f\left(x_{2}\right)$ but $x_{1} \neq x_{2}$.

Exercise

Consider $A=\{1,2,3\}$ and $B=\{w, x, y, z\}$ and possible functions below.
Are these functions well-defined and if so, are they one-to-one?
$f=\{(1, w),(2, x),(3, x),(3, z)\}$
$g=\{(1, w),(2, x),(3, x)\}$
$h=\{(1, w),(2, x),(3, z)\}$

How many one-to-one functions exist between A and B ?

Proving a function is one-to-one

If we want to prove a function is one to one, we follow the definition

$$
f: X \rightarrow Y \text { is one-to-one } \Longleftrightarrow\left(\forall x_{1}, x_{2} \in X\right)\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}\right)
$$

We must show that if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$ for all x_{1} and x_{2}.

So we get to assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$, and we must show that $x_{1}=x_{2}$.

Example proving one-to-one

Theorem

$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=4 x-1$ is one-to-one

Proof.

We must show that $x_{1}=x_{2}$ for all $x_{1}, x_{2} \in \mathbb{R}$ whenever $f\left(x_{1}\right)=f\left(x_{2}\right)$. Prove this directly, starting with $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
f\left(x_{1}\right) & =f\left(x_{2}\right) \\
4 x_{1}-1 & =4 x_{2}-1 \\
4 x_{1} & =4 x_{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

$$
\text { expand } f(x)
$$

add 1 to both sides
divide both sides by 4

Exercise

Prove that the following are one-to-one, or provide a counter example.
$f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x^{2}$
$g: \mathbb{Z} \rightarrow \mathbb{Z}, g(x)=x^{3}$
$h: \mathbb{R}^{+} \rightarrow \mathbb{Z}^{+}, h(x)=\lfloor x\rfloor$
$\lfloor\cdot\rfloor$ is the floor function, it lowers any real number to the smallest integer value less than that number. For example, $\lfloor 7.75\rfloor=7$ and $\lfloor-3.2\rfloor=-4$

Onto Functions

Definition

A function $f: X \rightarrow Y$ is onto (or surjective) if, and only if, given any element $y \in Y$, it is possible to find an element $x \in X$ such that $f(x)=y$.

We can write this symbolically as

$$
f: X \rightarrow Y \text { is onto } \Longleftrightarrow(\forall y \in Y)(\exists x \in X)(f(x)=y)
$$

The contrapositive reveals a definition for not onto

$$
f: X \rightarrow Y \text { is not onto } \Longleftrightarrow(\exists y \in Y)(\forall x \in X)(f(x) \neq y)
$$

Proving something is onto (or not onto)

If we wanted to show some function is onto, we can follow the definition

$$
f: X \rightarrow Y \text { is onto } \Longleftrightarrow(\forall y \in Y)(\exists x \in X)(f(x)=y)
$$

We would need to provide an example (or formula for) x such that $f(x)=y$ for all y.

If we wanted to show that something is not onto, again following the definition.

$$
f: X \rightarrow Y \text { is not onto } \Longleftrightarrow(\exists y \in Y)(\forall x \in X)(f(x) \neq y)
$$

We can find a counter example y for which there is no corresponding x where $f(x)=y$

Example proof

Theorem

$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=4 x-1$ is onto

Proof.

Assume that $y \in \mathbb{R}$, we must find a $x \in \mathbb{R}$ where $f(x)=y$. Let's assume x exists for every y, then

$$
\begin{aligned}
y & =4 x-1 \\
\frac{y+1}{4} & =x
\end{aligned}
$$

The formula for $x=\frac{y+1}{4}$ always provides real number. If we apply it to $f(x)$

$$
\begin{aligned}
f(x)=f\left(\frac{y+1}{4}\right) & =4\left(\frac{y+1}{4}\right)-1 \\
& =y+1-1=y
\end{aligned}
$$

You always get y, thus this formula for an x can produce any y.

Exercise

Prove that the following functions are onto, or provide a counter example.

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=4(x-1) \\
& g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2}
\end{aligned}
$$

One-to-one Correspondence Functions

Definition

A one-to-one correspondence (or bijection) from set X to Y is a function $f: X \rightarrow Y$ that is both one-to-one and onto.

Example

The function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=4 x-1$ is one-to-one and onto, and is thus a bijection of the real numbers (or a one-to-one correspondence function)

Example of one-to-one Correspondence Functions

Prove that

$$
f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}, f(x, y)=(x+y, x-y)
$$

is a one-to-one correspondence function.

We must prove that the function is both one-to-one and onto.

Proof of one-to-one

Proof of one-to-one.

We must show that if $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$ then $x_{1}=x_{2}$ and $y_{1}=y_{2}$.

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{2}, y_{2}\right) \\
\left(x_{1}+y_{1}, x_{1}-y_{1}\right) & =\left(x_{2}+y_{2}, x_{2}-y_{2}\right)
\end{aligned}
$$

For two pairs to be equal, the first and second element must be equal.

$$
\begin{aligned}
& x_{1}+y_{1}=x_{2}+y_{2} \\
& x_{1}-y_{1}=x_{2}-y_{2}
\end{aligned}
$$

Adding the equations gives $2 x_{1}=2 x_{2}$, or $x_{1}=x_{2}$. After substitution.

$$
\begin{aligned}
x_{1}+y_{1} & =x_{2}+y_{2} \\
x_{1}+y_{1} & =x_{1}+y_{2} \\
y_{1} & =y_{2}
\end{aligned}
$$

So $x_{1}=x_{2}$ and $y_{1}=y_{2}$, when $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$ and f is one-to-one.

Proof of onto

Proof of onto.

Assume that (u, v) is in the co-domain of f, we must show that there exists input (r, s) such that $f(r, s)=(u, v)$. If we let $r=\frac{u+v}{2}$ and $s=\frac{u-v}{2}$ then.

$$
\begin{aligned}
f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) & =\left(\frac{u+v}{2}+\frac{u-v}{2}, \frac{u+v}{2}-\frac{u-v}{2}\right) \\
& =\left(\frac{u+v+u-v}{2}, \frac{u+v-u+v}{2}\right) \\
& =\left(\frac{2 u}{2}, \frac{2 v}{2}\right) \\
& =(u, v)
\end{aligned}
$$

So for any (u, v) in the co-domain, we can find an input (r, s), and thus f is onto.

Inverse Function

If a function $f: X \rightarrow Y$ is a one-to-one correspondence, then there must exist an inverses function $f^{-1}: Y \rightarrow X$

$$
f^{-1}(y)=x \Longleftrightarrow y=f(x)
$$

Why would a function that is just onto or one-to-one, but not both, not have an inverse function?

What is the inverse function for $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=4 x-1$?

