Lec 11:
Recursion and Recurrence

Prof. Adam J. Aviv

GW

CSCI 1311 Discrete Structures |
Spring 2023

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 1/19

Counting Steps

Consider every operation as a “step.” That is, any comparison, assignment,
addition, etc. Then, how many steps does it take in the worst case?

int find(int x, int[] array){
for(int i=0;i<array.length;i++){
if (array[i] == x) return i;
}

return —1;

}

But it also depends on how long the array is. Let's assign an array length
as the variable n.

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 3/19

Algorithmic Performance

How do we compare two algorithms? Which one is faster?

int find(int x, int[] array){ void sort(int[] array){

for(int i=0;i<array.length;i++){ for(int i=0;i<array.length;i++){
if (array[i] = x) return i; for(int j=i+1l;j<array.length;j++){

} if(array[j] < array[i]){
return —1; int k = array[i]; //swap

array[i] = array[j];

array[j] = k;

}
}
}

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 2/19

Counting Steps: find()

int find(int x, int[] array){

//1 step: int i =0

//1 step i< array.length

for(int i=0;i<array.length;i++){
//n iterations of ..

//1 step: array[i] == x
if (array[i] == x) return i;

//1 step: i++
//1 step i<array.length

}
return —1; //1 step return
}
int i=0;i<array.length return -1
~~
Stind(n) = 2 + 3-n + 1
—_———

n iterations of: array[i]==x;i++;i<array.length

S(find)=3-n+3

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 4/19




Counting Steps: sort

void sort(int[] array){

//n steps for first loop Ssort(n) =
//2 steps to initialize and compare int i=0;i<array.length nXint j=i+1;j<array.length
//n iterations of .. 2 + 4.-n

for(int i=0;i<array.length;i++){\
//2 steps to initialize and compare
//n—1 iterations of + 6-(n—1)) + 6-(n—2)
for(int j=i+1;j<array.length;j++){

i=0: 6 steps X (n—1) i=1: 6 steps X (n—2)
//1 for comparison
if(array[j] < array[i]){
//3 for swap +
int k = array[i];
array[i] = array[j];
array[j] = k; + 6-2 + 6-1
}//2 steps to increment and i=(n—2): 6 steps X2 i=(n—1): 6 steps X1
compare
}//2 steps to increment and compare
} n—1
=2+4-n+6<zk
k=1
6-n(n—1)
=24+4-n+ ——
2
=2+4-n+3(n27n)
=3.n%+n+2
Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 5/19

Big-O Notation

Definition
Big-O Let f and g be real value functions on the set of same negative real

numbers, then we say f is of order at most g written f(x) is O(g(x)),
if, and only if, there exists a positive real numbers B and b such that:

(Vx > b) f(x) < B- g(x)

Another way to understand this definition is that for any function f(x), we
can identify a function g(x) that is its upper bound.

For example, we can show that f(x) = 3n+ 3 is in O(g(x)) where
g(x) = x.

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 7/19

Comparing find and sort

Which routine is faster? That is, requires fewer steps in the worst case for
an array of length n?

Stind(n) =3-n+3
Seort(n) =3-n*+n+2

For big values of n (like really, really, big), n? will dominate n.

So find is faster than sort, requiring fewer steps in the worst case.

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 6/19

Converting to Big-O

Proof.
To prove Sg i(x) = f(x) = 3x + 3 is in O(g(x) = x), let B = 10 and b = 19. By induction on x, in the base case let
x=b+1=20and f(x) < B - g(x)
f(x) < B-g(x))=3-20+3 < 10-10
= 63 < 100
In the inductive case we need to show that
3(x+1) + 3 < 10(x + 1)

3x +6 < 10x + 10

3x — 4 < 10x

3x —4 < 3x +3 < 10x by IH: f(x) < B - g(x) = 3x + 3 < 10x

3x —4 <3x+3 showing this, shows the result b/c 3x + 3 < 10x

3x —3x<2+4
0<6
Thus Sg; 4(x) is O(g(x) = x), or more simply, O(x). O
v

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 8/19




Exercises

Prove the following Big-O's:

f(n) =3n+5is O(n?)

f(n) =3n?+n+4is O(n?)

f(n) = n?is O(2")

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 9/19

A abbreviated understanding of Big-O
Once you do enough of these, you learn quickly that to prove something is
in Big-O, you:

@ Drop all constants — like 1 or 10 or 20

o Identify the dominate term — like n? or 2"

@ The Big-O is the dominate term — like O(n) or O(n?)

Sfina(n) =3-n+3 is O(n)
Seort(n) =3-n*+n+4 is O(n?)
f(n) =n> — n* + n — 300 is O(n*)
f(n) =log(n+5)+2 is O(log n)
f(n) =10n + 11log(n) is O(n)
f(n) =10n + nlog(n) is O(nlog n)
f(n) =2" + n'®° is 0(2")
f(n) =42 is O(1)

Comparing Big-O’s
o o) j o) o(logn)
oln)
£
ey
ouy
Input Size
logarithmic exponential
—— 5 3 —~
O(1) < O(logn) < O(nlogn) < O(n“) < O(n*) < 0O(2") < O(n!)
—— —_———
constant polynomial
/19

Also, we want the smallest big-O that bounds a function.

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 10/19
Big-O Logs

Under Big-O, we don’t specify the log base because we can prove a log of
any base is Big-O of a log of any other base. For example,

Proof: f(x) = logip(x) is O(logy(x)).

2
Let B = m and b =1, then we need to show:
log,(x)
| 2. L h f B f Rul
0g0(x) < log, (10) by Log Change of Base of Rule
log;o(x) < 2 logyo(x)
1<2
DJ

And you can always choose a B of similar form for any change of base.
Thus we simply just say O(log). And since we are CS people, we assume
the log is base 2.

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 12/19




Exercises

What is the step counts and the Big-O of the following functions, assuming
n as variable.

int sum = 0; int sum = 0;
for (int i = 0; i < n; i++) { for (int i = 0; i < n/2; i++) {
for (int j =0; j < i/2; j++) { for (int j = 0; j < n/2; j++) {
sum+-+; sum+-+;
}
} }
int sum = 0; int sum = 0;
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
for (int j = 0; j < n*n; j++) { for (int j = 0; j < i*n; j++) {
sum++; sum++;
}
} }

Recursive Functions

What is the big-O of a recursive function? Assume the length array is n
and it's called as sum(0,array)

int sum(int i, array[]){
if(i >= array.length)
return O;
else
return array[i] 4+ sum(i+1,array);

O(n): Requires n recursive calls (the length of the array), and each call is a
constant amount of work.

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 13/19

Recursion as recurrence
Consider that a recurrence relation is a lot like a recursive function. Let's
use a recurrence to describe the step function for this routine.

int sum(int i, array[]){
if(i >= array.length)/
return 0; //1 step
else
return array[i] 4+ sum(i+1,array);
//array[i] : 1 step
//i+1 : 1 step
//sum(i+1,array) : S {n—1} (recurrence

/1 step

// + : 1 step
//return: 1 step

In the n-th recursion call, the steps S, is

S, =S5,_1+5 recursive case

So=1 base case

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 15/19

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 14 /19

Solving the recurrence for Big-O

S =S,-1+5 recursive case

So=1 base case

Solving the recurrence:

Sn:5n—1+5
Sn:5n72+5+5

Sn=Sp—i+5i i = n for base case

S, =S50+5n
Sn=5n+1

The Big-O of S, is O(n).

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 16 /19




Recursion with loops

What is the step function, as a recurrence relation, that describes the
following routine?

Determining Big-O

Sp=a-n+S,_1+b
=a-n+a-(n—1)+S,_2)+b+b

=a-n+ta-(n—1)+a-(n—2)+S,_3)b+b+b
int sumsum(int i, array][]){
if(i >= array.length){ .
return O; !
BZ("*f)JrSn—f*f'b n =i in base
int s=0; j=0
for(int j=0;int j<i;j++)
s += array[j];
return s + sumsum(i+1,array);

-
o
w
o

-~
]

n
ad (n—j)+Son-b

} e
:aZj+c+n-b
Jj=0
) n(n+1)
In the deepest, n-th, recursive call, there are a number of steps performed =2 T tctnb
n-times, plus the amount in the recursion, plus some b more steps. Then ¢ = gn(n+1)+c+n~b let g =d

steps in base. —d P id ontdicin b

. =d-n*4+(d+b)-n+d letd+b=ed+c="f
Sp=a-n+S,_1+b recursive case mAdrE) ntdie stdtbmedre

—d-n*4e-ntf dropping constants
So=c base case 2 an o(r)
Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 17 /19 Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 18 /19
Exercises

Find the recurrence function, solve it, and then determine the Big-O for the
routines below. Assume all functions are called as foo(0,n) for some n.

int foo(int i, int n){ int foo(int i, int n){
if(i > n){ if(i > n){
int k; return 1;

for (k=0;k<n; k++);
return k;

Yelse{
return 1 + bar(i+1,n);

Yelse{
return 1 + bar(i+1,n) + bar(i+1,n);

}
int foo(int i, int n){ int foo(int i, int n){
if(i > n){ if (n==1){
return 1; return 1;
Yelse }else
return 1 + bar(i+1,n—1); return 1 + bar(i+1,n/2);
¥ ¥

Prof. Adam J. Aviv (GW) Lec 11: Recursion and Recurrence 19/19




