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Counting Steps

Consider every operation as a “step.” That is, any comparison, assignment,
addition, etc. Then, how many steps does it take in the worst case?

int find(int x, int[] array){
for(int i=0;i<array.length;i++){
if (array[i] == x) return i;
}

return —1;

}

But it also depends on how long the array is. Let's assign an array length
as the variable n.
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Algorithmic Performance

How do we compare two algorithms? Which one is faster?

int find(int x, int[] array){ void sort(int[] array){

for(int i=0;i<array.length;i++){ for(int i=0;i<array.length;i++){
if (array[i] = x) return i; for(int j=i+1l;j<array.length;j++){

} if(array[j] < array[i]){
return —1; int k = array[i]; //swap

array[i] = array[j];

array[j] = k;

}
}
}
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Counting Steps: find()

int find(int x, int[] array){

//1 step: int i =0

//1 step i< array.length

for(int i=0;i<array.length;i++){
//n iterations of ..

//1 step: array[i] == x
if (array[i] == x) return i;

//1 step: i++
//1 step i<array.length

}
return —1; //1 step return
}
int i=0;i<array.length return -1
~~
Stind(n) = 2 + 3-n + 1
—_———

n iterations of: array[i]==x;i++;i<array.length

S(find)=3-n+3
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Counting Steps: sort

void sort(int[] array){

//n steps for first loop Ssort(n) =
//2 steps to initialize and compare int i=0;i<array.length nXint j=i+1;j<array.length
//n iterations of .. 2 + 4.-n

for(int i=0;i<array.length;i++){\
//2 steps to initialize and compare
//n—1 iterations of + 6-(n—1)) + 6-(n—2)
for(int j=i+1;j<array.length;j++){

i=0: 6 steps X (n—1) i=1: 6 steps X (n—2)
//1 for comparison
if(array[j] < array[i]){
//3 for swap +
int k = array[i];
array[i] = array[j];
array[j] = k; + 6-2 + 6-1
}//2 steps to increment and i=(n—2): 6 steps X2 i=(n—1): 6 steps X1
compare
}//2 steps to increment and compare
} n—1
=2+4-n+6<zk
k=1
6-n(n—1)
=24+4-n+ ——
2
=2+4-n+3(n27n)
=3.n%+n+2
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Big-O Notation

Definition
Big-O Let f and g be real value functions on the set of same negative real

numbers, then we say f is of order at most g written f(x) is O(g(x)),
if, and only if, there exists a positive real numbers B and b such that:

(Vx > b) f(x) < B- g(x)

Another way to understand this definition is that for any function f(x), we
can identify a function g(x) that is its upper bound.

For example, we can show that f(x) = 3n+ 3 is in O(g(x)) where
g(x) = x.
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Comparing find and sort

Which routine is faster? That is, requires fewer steps in the worst case for
an array of length n?

Stind(n) =3-n+3
Seort(n) =3-n*+n+2

For big values of n (like really, really, big), n? will dominate n.

So find is faster than sort, requiring fewer steps in the worst case.
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Converting to Big-O

Proof.
To prove Sg i(x) = f(x) = 3x + 3 is in O(g(x) = x), let B = 10 and b = 19. By induction on x, in the base case let
x=b+1=20and f(x) < B - g(x)
f(x) < B-g(x))=3-20+3 < 10-10
= 63 < 100
In the inductive case we need to show that
3(x+1) + 3 < 10(x + 1)

3x +6 < 10x + 10

3x — 4 < 10x

3x —4 < 3x +3 < 10x by IH: f(x) < B - g(x) = 3x + 3 < 10x

3x —4 <3x+3 showing this, shows the result b/c 3x + 3 < 10x

3x —3x<2+4
0<6
Thus Sg; 4(x) is O(g(x) = x), or more simply, O(x). O
v
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Exercises

Prove the following Big-O's:

f(n) =3n+5is O(n?)

f(n) =3n?+n+4is O(n?)

f(n) = n?is O(2")
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A abbreviated understanding of Big-O
Once you do enough of these, you learn quickly that to prove something is
in Big-O, you:

@ Drop all constants — like 1 or 10 or 20

o Identify the dominate term — like n? or 2"

@ The Big-O is the dominate term — like O(n) or O(n?)

Sfina(n) =3-n+3 is O(n)
Seort(n) =3-n*+n+4 is O(n?)
f(n) =n> — n* + n — 300 is O(n*)
f(n) =log(n+5)+2 is O(log n)
f(n) =10n + 11log(n) is O(n)
f(n) =10n + nlog(n) is O(nlog n)
f(n) =2" + n'®° is 0(2")
f(n) =42 is O(1)

Comparing Big-O’s
o o) j o) o(logn)
oln)
£
ey
ouy
Input Size
logarithmic exponential
—— 5 3 —~
O(1) < O(logn) < O(nlogn) < O(n“) < O(n*) < 0O(2") < O(n!)
—— —_———
constant polynomial
/19

Also, we want the smallest big-O that bounds a function.
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Big-O Logs

Under Big-O, we don’t specify the log base because we can prove a log of
any base is Big-O of a log of any other base. For example,

Proof: f(x) = logip(x) is O(logy(x)).

2
Let B = m and b =1, then we need to show:
log,(x)
| 2. L h f B f Rul
0g0(x) < log, (10) by Log Change of Base of Rule
log;o(x) < 2 logyo(x)
1<2
DJ

And you can always choose a B of similar form for any change of base.
Thus we simply just say O(log). And since we are CS people, we assume
the log is base 2.
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Exercises

What is the step counts and the Big-O of the following functions, assuming
n as variable.

int sum = 0; int sum = 0;
for (int i = 0; i < n; i++) { for (int i = 0; i < n/2; i++) {
for (int j =0; j < i/2; j++) { for (int j = 0; j < n/2; j++) {
sum+-+; sum+-+;
}
} }
int sum = 0; int sum = 0;
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
for (int j = 0; j < n*n; j++) { for (int j = 0; j < i*n; j++) {
sum++; sum++;
}
} }

Recursive Functions

What is the big-O of a recursive function? Assume the length array is n
and it's called as sum(0,array)

int sum(int i, array[]){
if(i >= array.length)
return O;
else
return array[i] 4+ sum(i+1,array);

O(n): Requires n recursive calls (the length of the array), and each call is a
constant amount of work.
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Recursion as recurrence
Consider that a recurrence relation is a lot like a recursive function. Let's
use a recurrence to describe the step function for this routine.

int sum(int i, array[]){
if(i >= array.length)/
return 0; //1 step
else
return array[i] 4+ sum(i+1,array);
//array[i] : 1 step
//i+1 : 1 step
//sum(i+1,array) : S {n—1} (recurrence

/1 step

// + : 1 step
//return: 1 step

In the n-th recursion call, the steps S, is

S, =S5,_1+5 recursive case

So=1 base case
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Solving the recurrence for Big-O

S =S,-1+5 recursive case

So=1 base case

Solving the recurrence:

Sn:5n—1+5
Sn:5n72+5+5

Sn=Sp—i+5i i = n for base case

S, =S50+5n
Sn=5n+1

The Big-O of S, is O(n).
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Recursion with loops

What is the step function, as a recurrence relation, that describes the
following routine?

Determining Big-O

Sp=a-n+S,_1+b
=a-n+a-(n—1)+S,_2)+b+b

=a-n+ta-(n—1)+a-(n—2)+S,_3)b+b+b
int sumsum(int i, array][]){
if(i >= array.length){ .
return O; !
BZ("*f)JrSn—f*f'b n =i in base
int s=0; j=0
for(int j=0;int j<i;j++)
s += array[j];
return s + sumsum(i+1,array);

-
o
w
o

-~
]

n
ad (n—j)+Son-b

} e
:aZj+c+n-b
Jj=0
) n(n+1)
In the deepest, n-th, recursive call, there are a number of steps performed =2 T tctnb
n-times, plus the amount in the recursion, plus some b more steps. Then ¢ = gn(n+1)+c+n~b let g =d

steps in base. —d P id ontdicin b

. =d-n*4+(d+b)-n+d letd+b=ed+c="f
Sp=a-n+S,_1+b recursive case mAdrE) ntdie stdtbmedre

—d-n*4e-ntf dropping constants
So=c base case 2 an o(r)
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Exercises

Find the recurrence function, solve it, and then determine the Big-O for the
routines below. Assume all functions are called as foo(0,n) for some n.

int foo(int i, int n){ int foo(int i, int n){
if(i > n){ if(i > n){
int k; return 1;

for (k=0;k<n; k++);
return k;

Yelse{
return 1 + bar(i+1,n);

Yelse{
return 1 + bar(i+1,n) + bar(i+1,n);

}
int foo(int i, int n){ int foo(int i, int n){
if(i > n){ if (n==1){
return 1; return 1;
Yelse }else
return 1 + bar(i+1,n—1); return 1 + bar(i+1,n/2);
¥ ¥
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