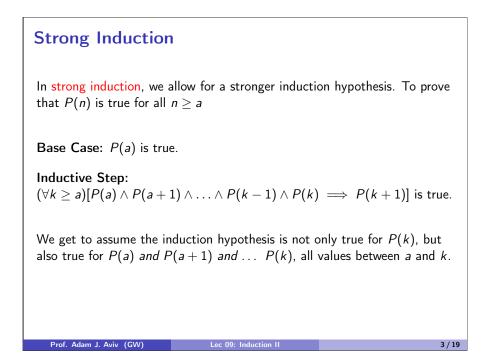


Weak Induction
To prove a proposition $P(n)$ holds for $\forall n \ge a$ by induction, we must:
Base Case: $P(a)$ is true
Inductive Step: $(\forall k \ge a)(P(k) \implies P(k+1))$ is true
The assumption that $P(k)$ is true is our Inductive Hypothesis, and generally, to prove $P(k + 1)$ we only need to assume that the prior result holds, namely $P(k)$. Assuming only the prior result holds, $P(k)$, in proving $P(k + 1)$ is called weak induction.
Prof. Adam J. Aviv (GW) Lec 09: Induction II 2/19

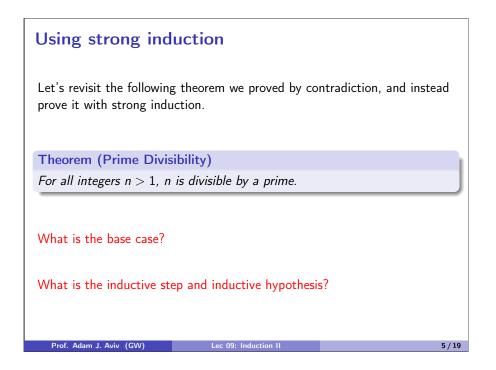


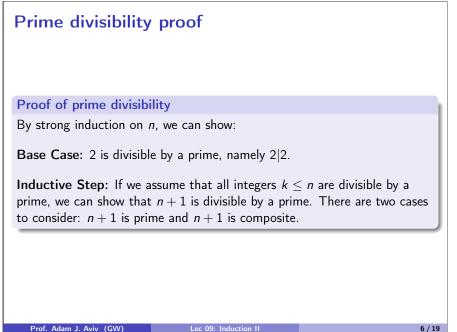
What makes this so strong? The inductive step requires prove the following implication. $P(a) \land P(a+1) \land \dots P(k-1) \land P(k) \implies P(k+1)$ But, recall that $p \rightarrow q \equiv \neg p \lor q$, so if we have $p_1 \land p_2 \rightarrow q \equiv \neg (p_1 \land p_2) \lor q$ $\equiv \neg p_1 \lor \neg p_2 \lor q$ $\equiv (\neg p_1 \lor q) \lor (\neg p_2 \lor q)$ $\equiv (p_1 \rightarrow q) \lor (\neg p_2 \rightarrow q)$ Or to put it another way, to prove the larger implication, we only need to show that any P(j) where $a \leq j \leq k$ implies P(k+1).

Prof. Adam J. Aviv (GW)

Lec 09: Induction II

4 / 19





Prime divisibility proof

Proof of prime divisibility (cont.)

Case (n + 1) is prime: If n + 1 is prime, then n + 1 divides itself, and is thus divisible by a prime.

Case (n + 1) is composite: If n + 1 is composite, then n + 1 = ab for some integers a and b where 1 < a < n + 1 and 1 < b < n + 1. By the inductive hypothesis a and b must be divisible by a prime because $a \le n$ and $b \le n$.

Consider *a* (but the same is true for *b*). By the IH, there exists a prime *p* such that p|a and the case assumes that a|(n + 1). By transitivity of divisibility, if p|a and a|(n + 1) then p|(n + 1), proving this case.

Lec 09: Induction II

Thus, every integer n > 1 is divisible by a prime.

Existence of a prime factorization

Recall that the *fundamental theorem of arithmetic* says that all numbers can be factored into a unique set of primes. There are two parts of the proof, existence and uniqueness. Existence can be proven using strong induction.

Theorem (Existence of a prime factorization)

For all integers n > 1, there exists a k and primes $p_1 < p_2 < \ldots < p_k$ such that $n = p_1 p_2 \ldots p_{k-1} p_k$.

What is the base case?

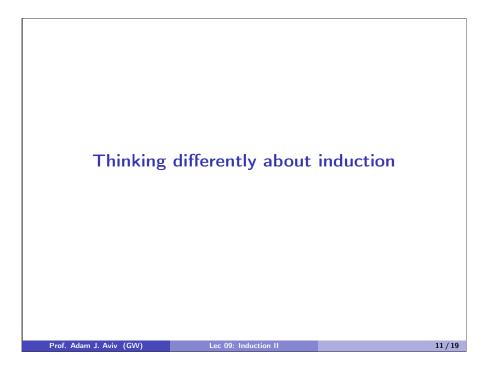
Prof. Adam J. Aviv (GW)

What do we need to show in the inductive step, and what is the inductive hypothesis?

7/19

Existence of prime factorization proof Proof of existence of prime factorization. Proof by strong induction on *n*. **Base Case:** n = 2, the prime factorization is simply 2 as 2 is prime. **Inductive Step:** Assume that for all $m \le n$ there exists a prime factorization, we must show that n + 1 has a prime factorization. There are two cases, n + 1 is prime or n + 1 is composite. • If n + 1 is prime, than the prime factorization is simply n + 1• If n + 1 is composite, than there exists integers r and s such that 1 < r < (n+1) and 1 < s < (n+1) and rs = n+1. Both r and s are less than n, so by the IH, we know that there exists prime factorization for both, namely that $r = p_1 \dots p_k$ and $s = q_1 \dots q'_k$. The prime factorization for n + 1 is then $p_1 \dots p_k q_1 \dots q_{k'}$. Prof. Adam J. Aviv (GW) Lec 09: Induction II 9/19

Exercise		
Proof the following us	sing (strong) induction	
For all integers $n > 0$, the $n = \ell \cdot 2^k$	here exists a $k \ge 0$ and odd	l integer ℓ , such that
Hint: Start by applying inducti need the inductive hypothesis i	on on <i>n</i> , and consider even and od n both cases.	d cases for <i>n</i> + 1. You may not
Prof. Adam J. Aviv (GW)	Lec 09: Induction II	10 / 19



Induction is not just about numbers

Induction can be applied to any proposition for which you can work from a base case in some well-ordered sequence.

$$P(0) \rightarrow P(1) \rightarrow \ldots \rightarrow P(k-1) \rightarrow P(k) \rightarrow \ldots P(n) \rightarrow P(n+1) \ldots$$

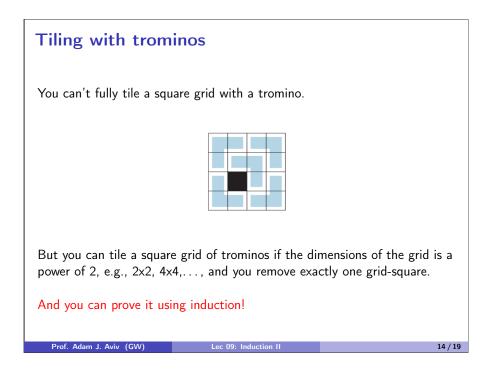
The numbers really mean that we have an obvious path through set of prepositions base case (P(0)) through the *n*'th case (P(n)) and beyond.

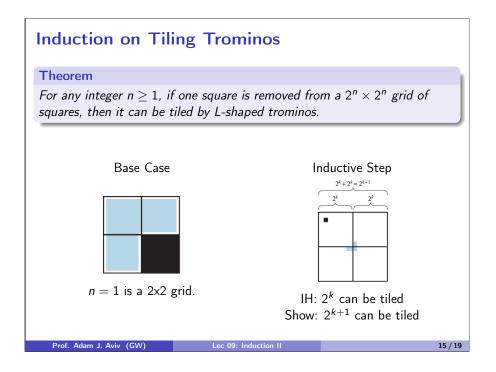
We can perform induction on other kinds of sequences of objects that have this property.

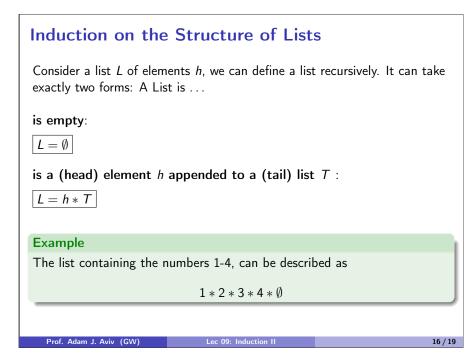
Prof. Adam J. Aviv (GW)	

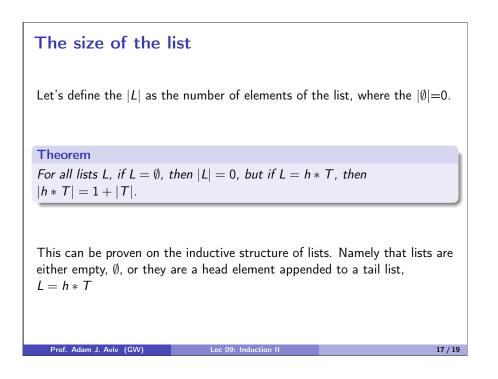
Lec 09: Induction II

Trominos
Trominos are objects that can be drawn with 3 squares. There are exacttly two types of trominos, straight and L-shaped.
straight and L-shaped
Trominos is an example of a polyomino, a generalization of domino, introduce by Solomn Golomb in 1954. His work (and others) led to things like Tetris.
Prof. Adam J. Aviv (GW) Lec 09: Induction II 13/19









Induction on Structure
Proof.
If $L = \emptyset$, then $ L = 0$ because L has no elements. The remainder of the theorem we can proof by induction on the structure of lists.
Base Case: $L = h * \emptyset$, then $ L = 1 + \emptyset $. The size of the \emptyset is 0. So $ L = 1$, proving the case since there is 1 element in the list.
Inductive Step: Assume that if $L = h * T$ then $ h * T = 1 + T $, can we show that if $M = a * b * S$ then $ a * b * S = 1 + b * S $.
Let $U = b * S$, then $M = a * U$, and we can now apply the IH with to M , providing us with $ b * S = 1 + U $.
Substituting back in for $U = b * S$, we have $ a * b * S = 1 + b * S $, proving our result.
Prof. Adam J. Aviy (GW) Lec 09: Induction II 18/19

