Lec 08:
 Induction I

Prof. Adam J. Aviv
GW
CSCI 1311 Discrete Structures I
Spring 2023

The sum of all numbers between 1-100

A folk tale about Gauss is that he was an annoying and disruptive elementary school student, so much so, that his teacher asked him to sum all the numbers between 1-100 to distract him to get some peace and quite in the classroom.

But Gauss found the answer
within a few seconds, without having to sum up all the numbers

Carl Friedrich Gauss 1777-1855 up directly.

Gauss' "trick"

$$
2 \cdot \sum_{i=1}^{100}=100 \cdot 101=10100
$$

Dividing by 2 gives us the result

$$
\sum_{i=1}^{100}=(100 \cdot 101) / 2=5050
$$

Generalizing Gauss' "trick"

What if we wanted to find a formula for the sum of the numbers 1-to- n ?

$$
\begin{array}{r}
\begin{array}{rrrrrr}
1+ & 2+ & 3+ & \ldots & +n-2 & +n-1 \\
+ & n+ & n-1+ & n-2+ & \ldots & +3 \\
n+1+ & n+1+ & n+1+ & \ldots & +n+1 & +2
\end{array}+1 \\
\hline
\end{array}
$$

$2 \cdot \sum_{i=1}^{n}=n(n+1)$

$$
\sum_{i=1}^{n}=\frac{n(n+1)}{2}
$$

Proving this based just on the equation

What if I asked you to prove it based on the equation alone?

$$
\forall n \in \mathbb{Z}^{+}, \sum_{1}^{n}=\frac{n(n+1)}{2}
$$

We can test for specific values,

$$
\sum_{i=1}^{3} i=1+2+3=6=3(3-1) / 2
$$

$$
\sum_{i=1}^{10} i=1+2+3+4+5+6+7+8+9+10=55=10(10+1) / 2
$$

As a universal quantifier, we can't check for all n.

The Inductive Hypothesis (IH)

Note the inductive step requires that you prove an implication:

$$
P(k) \Longrightarrow P(k+1)
$$

That is, "if $P(k)$, then $P(k+1)$."

Because we are proving an implication, we can assume that the hypothesis of the implication, $P(k)$, is true in proving that $P(k+1)$ is true.

The assumption that $P(k)$ is true is referred to as the inductive hypothesis.

Definition of (Weak) Induction

Definition (Method of Proof by Mathematical Induction)

To prove that $\forall n \geq a$, a property $P(n)$ is true, we must prove two cases:

- Base Case: $P(a)$ is true
- Inductive Step: $(\forall k \geq a)(P(k) \Longrightarrow P(k+1))$ is true.

Figure 5.2.3 If the k th domino falls backward, it pushes the $(k+1)$ st domino backward also.

Proving Gauss' formula with induction (1)

Theorem

For all integers $n \geq 1, \sum_{i=1}^{n} i=n(n+1) / 2$

Let $P(k)$ be the preposition that the sum of the integers 1-to- k is equivalent to the formula $k(k+1) / 2$. We must show this to be true $\forall k \geq 1$

We must prove two cases.
Base case: $P(1)$
Inductive case: $(\forall k \geq 1)(\underbrace{P(k)}_{\text {Assume IH }} \Longrightarrow \overbrace{P(k+1)}^{\text {Prove this }})$

Proving Gauss' formula with induction (2)

The base case is straightforward. This is clearly true at $\mathrm{P}(1)$.

Proof of Base Case: $P(1) \equiv \sum_{i=1}^{1} i=1(1+1) / 2$.

This is directly true because $\sum_{i=1}^{1}=1$ and $1(1+1) / 2=1$.

Inductive step (1)

Proof of Inductive Step: $P(k) \Longrightarrow P(k+1)$

We can rewrite the sum of the integers formula 1-to- $(n+1)$ with two sums.

$$
\sum_{i=1}^{k+1} i=\left(\sum_{i=1}^{k} i\right)+(k+1)
$$

By the inductive hypothesis, $\sum_{i=1}^{k} i=k(k+1) / 2$

$$
\sum_{i=1}^{k+1} i=\frac{k(k+1)}{2}+(k+1)
$$

Describing the inductive step

Assume the inductive hypothesis (IH)

$$
P(k) \equiv \overbrace{\left[\sum_{i=1}^{k} i=\frac{k(k+1)}{2}\right]}^{\text {Assume this equality is true! }}
$$

Can we show?

$$
P(k+1) \equiv \underbrace{\left[\sum_{i=1}^{k+1} i=\frac{(k+1)(k+2)}{2}\right]}_{\text {Can we show this equality is true? }}
$$

Inductive step (2)

Proof of Inductive Step: $P(k) \Longrightarrow P(k+1)$ (cont.)

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Which shows our result.

Exercise

Proof the following using induction.

$\sum_{i=1}^{n}(6 i-2)=n(3 n+1)$

For all integers $n \geq 1,2^{n}-1$ is odd.

For all integers $n \geq 1,5^{n}-1$ is divisible by 4 .

Deriving the Geometric sequence (1)

Consider the sequence

$$
\sum_{i=0}^{n-1}=r^{0}+r^{1}+r^{2}+\ldots+r^{n-3}+r^{n-2}+r^{n-1}
$$

If we multiply the sequence by $(1-r)$, it subtracts the sequence from the sequence multiplied by r

\[

\]

$=1-r^{n}$

Arithmetic and Geometric Sequence

The sum of the first n integers is also called the arithmetic sum and comes up often in computer science.

$\sum_{i=1}^{n} i$	Arithmetic Sum

The geometric sum is another import summation in computer science that relates to exponentiation of ratios.

$$
\sum_{i=0}^{n-1} r^{i} \quad \text { Geometric Sum }
$$

Where $r \in \mathbb{Q}$ (set of rationals).

Deriving the Geometric sequence (2)

With some basic math,

$$
\begin{aligned}
(1-r)\left(r^{0}+r^{1}+r^{2}+\ldots+r^{n-3}+r^{n-2}+r^{n-1}\right) & =1-r^{n} \\
\left(r^{0}+r^{1}+r^{2}+\ldots+r^{n-3}+r^{n-2}+r^{n-1}\right) & =\frac{1-r^{n}}{1-r} \\
\sum_{i=0}^{n-1} r^{i} & =\frac{1-r^{n}}{1-r}
\end{aligned}
$$

Exercise

Proof that the sum of the geometric sequence using induction.

For all integers $n>0$,

$$
\sum_{i=0}^{n-1} r^{i}=\frac{1-r^{n}}{1-r}
$$

Summation as recursion

The sum of 1-to-10, is 10 plus the sum of 1-to- 9 .

$$
\begin{aligned}
& \sum_{i=1}^{10} i=\underbrace{1+2+3+4+5+6+7+8+9}_{\sum_{j=1}^{9} j}+10 \\
& \sum_{i=1}^{10} i=\left(\sum_{j=1}^{9} j\right)+10
\end{aligned}
$$

And, the sum of 1-to- 9 , is 9 plus the sum of 1-to-8.

$$
\begin{aligned}
& \sum_{j=1}^{9} j=\underbrace{1+2+3+4+5+6+7+8}_{\sum_{1=k}^{8} k}+9 \\
& \sum_{j=1}^{9} j=\left(\sum_{k=1}^{8} k\right)+9
\end{aligned}
$$

And \ldots there is a sum that is obvious, $\sum_{i=1}^{1}=1$

Connection between induction and recursion

Recursion: "If I assume the function Sum computes the result for $\operatorname{Sum}(n)=x$, then I can compute the result for $\operatorname{Sum}(n+1)=x+(n+1)$."

Induction: "If I assume the formula f is correct for $\sum_{i=1}^{n}=\mathrm{f}(n)$, then I can prove that formula f is correct for $\sum_{i=1}^{n+1}=\mathrm{f}(n+1)$."

Additional Exercises

For all integers $n>0,11^{n}-4^{n}$ is divisible by 7

For all integers $n \geq 2, n^{2}>n+1$

