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Recall the structure of direct proofs

If we want to show some statement is true, say P(x) =⇒ Q(x):

Goal: To prove P(x) =⇒ Q(x)
Approach: Assume P(x)

...
Therefore Q(x)
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Direct Proof Techniques

By example
▶ Use to prove and existential quantifier

By counterexample
▶ Use to disprove a universal quantifier

By generic particular
▶ Use to prove a universal quantifier or disprove an extensional quantifier

when you can show something is true for an arbitrarily chosen element.
By cases

▶ Use to prove universal quantifiers when it can be shown that there
exists a set of finite cases for the quantification, for example, either
even or odd. Each case can then be proven separately.
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Other Proof techniques

We will explore two other proof techniques
Proof by contradiction:

▶ To prove P, show that ¬P =⇒ c
Proof by contraposition (contrapositive)

▶ To prove P =⇒ Q, show that ¬Q =⇒ ¬P
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Proof by Contradiction

Goal: To prove P
Approach: Assume ¬P

...
R
...
¬R

Conclusion: ¬P =⇒ R ∧ ¬R a contradiction
Therefore: P holds.
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Well Ordered Principle

Definition
The well-ordered principle of integers states that for every non-empty set of
positive integers, there must exists a smallest element.

Example
The set {5, 8, 22, 13} has a smallest value, 5.

The set {x2 | x ∈ Z+ and 5 ≤ x ≤ 10} has a smallest value, 25.
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Theorem
Any integer greater than 1 is divisible by a prime number.

Proof.
Let n be an integer greater than 1, and let’s define
D = {d ∈ Z+ | d |n}\{1, n}, or more generally, the set of factors that
divides n, excluding 1 and n. We can explore two cases

If |D| = 0, then n is prime. Since n|n, we have shown our result.
If |D| > 0, then n is composite. By the well-ordered principle, there
must exists a smallest element d0, and we can prove d0 must be prime
by contradiction. Assume that d0 is composite . . .

Where is the contradiction? (Discuss!)
Two hints:

A positive integer n > 1 is composite if, and only if, there exists integers r and s, where
n = rs, 1 < r < n and 1 < s < n.

Divisibility is transitive: For integers a and b, if a|b and b|c, then a|c
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Proof.
. . .

Assume that d0 is composite.

There must exist an integer c such that c |d0 where 1 < c < d0. By
transitivity of divisibility c |n because c|d0 and d0|n.

In that case, c must also be an element in D, but c < d0. We have a
contradiction because d0 was the smallest element of D and c < d0 and
c ∈ D. Therefore d0 cannot be composite, and must be prime.
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Unique Factorization
The proof that all integers are divisible by a prime (and a few other
theorems) will eventually lead you to this amazing fact, that all positive
integers have a unique prime factorization. This called the Fundamental
Theorem of Arithmetic (FTA).

Theorem (Fundamental Theorem of Arithmetic (FTA))

Given any integer n > 1, there exists a positive integer k , distinct primes
p1, p2, . . . , pk and positive integers e1, e2, . . . , ek such that

n = pe11 pe22 . . . pekk

and p1 < p2 < . . . < pk

To prove FTA, you must show that there exists a set of prime factors for
every number and those prime factors are unique.

We will prove existence with (strong) induction next week, and you will
prove the uniqueness in lab.
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Exercise

Prove the following theorems by contradictions.

There is no greatest integer.

There is no integer that is both even and odd.

Both proofs rely on the fact that integers are closed under addition/subtraction, but not

closed under division such as 1/2 or 2/3. That is if a and b are integers, then a+ b and a− b

are also integers but a/b may not be.
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Euclid’s proof for infinite primes (1)

This fact was proven more than 2000(!) years ago by Euclid (ca. 300 BCE).

Theorem
There is an infinite number of primes.

Take a moment to reflect on how amazing that is. Arabic numbers were
not even invented yet (ca. 500 CE)!

But, first we need to show the following lemma:

Lemma
For integers a, b, c If integer a|b and a|c then a|(b − c)

Proof.
If a|b and a|c , then exists k and k ′ such that b = ak and c = ak ′.
Then b − c = ak − ak ′ = a(k − k ′), thus a|(b − c).
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Euclid’s proof for infinite primes (2)

Theorem
There is an infinite number of primes.

Proof.
Assume there is exactly k primes, from p1 < p2 < . . . < pk , and define the
number n = p1p2 . . . pk as the multiplication of all k primes. Let
m = n+ 1, the multiplication of all the primes, plus 1. By the assumptions,
m cannot be prime (it is composite) because m > pk , the largest prime!

If m is composite, by our earlier theorem, then there must exists a prime
p|m. By our assumption, p must be one of the p1 . . . pk primes. Also p|n
because n = p1p2 . . . pk . By the lemma, it must be the case that p|(m−n).
But m− n = 1, so p|1 implying p ≤ 1. p cannot be prime: a contradiction.

There cannot be a finite number of primes; there is an infinite number.
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Rationals (Q) and Irrationals

Definition
A real number r is rational if, and only if, it can be expressed as a quotient
of two integers with a nonzero denominator. A real number that is not
rational is irrational.

r ∈ Q ⇐⇒ (∃a, b ∈ Z)(r =
a

b
and b ̸= 0)

We say a
b is in reduced form if there are no common factors. Another way

to say this is that a and b are relatively prime. All rationals can be
expressed in reduced form.
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Geometric representation of the
√

2

In Euclidean geometry, you could construct
√

2 using a ruler and compass.

1

1

√
2

But it was a great unsolved problem (of the classical era) if this number
can be expressed in terms of a ratio, that is, is it rational?
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Evenness of Squares (1)

Before proving irrationality of
√

2, we will need the following lemma.

Lemma

n is even if, and only if, n2 is even.

Note this is a bi-conditional statement:

(∀n ∈ Z)(Even(n)↔ Even(n2)) ≡
(∀n ∈ Z)(Even(n)→ Even(n2)) ∧ (Even(n)← Even(n2))

It is equivalent to the and of two implications, and we must prove both!
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Lemma =⇒ : n is even if, and only if, n2 is even.

if n is even, then n2 is even

Proof.

If n is even, then exists a k such that n = 2k . Then n2 = 4k2 = 2(2k2),
and n2 is even.

What about proving the other directions?
If we assume n2 is even, we are left with n2 = 2k for some integer k
. . . how do we show that n is even?
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Proof by Contraposition

Recall that p → q ≡ ¬q → ¬p, so another way to prove an implication is
by showing the contrapositive is true. This technique is called proof by
contraposition (or more simply, proof by contrapositive)

Goal: To prove P =⇒ Q
Approach: Assume ¬Q

...
Therefore ¬P

Conclusion: ¬Q =⇒ ¬P , which is equivalent to P =⇒ Q
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Evenness of Square (2)

What is the contrapositive of the implication?

Lemma ⇐ : n is even if, and only if, n2 is even.

if n2 is even, then n is even

“If n is not even, then n2 is not even.” Or, put another way, “if n is odd,
then n2 is odd.” Prove it now!

Proof.
Assume that n is odd, then n = 2k + 1 and
n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, so n2 is odd.

By contraposition, if n is odd, then n2 is odd shows that if n2 is even, then
n is even.
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Irrationality of
√

2 (2)

Proof of Irrationality of
√

2

Assume that
√

2 is rational, then there exists integers a and b such that√
2 = a/b and a and b are relatively prime, that is a and b do not share

common divisors and so a/b is in reduced form. Then

√
2 =

a

b

2 =
a2

b2

2b2 = a2

Thus a2 is even, and by the lemma, so is a. So we can write a = 2k for
some integer k .
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Irrationality of
√

2 (3)

Poof of the Irrationality of
√

2 (cont.)

Substituting in a = 2k , we have

2b2 = a2

2b2 = (2k)2

2b2 = 4k2

b2 = 2k2

Thus b is also even. If a is even, and b is even, then they share a common
divisor, namely 2, and are not relatively prime and the fraction is not in
reduced form: a contradiction.

Thus
√

2 cannot be rational and is irrational.
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Exercise

Proof the following, by proving the contrapositive.

If 3k + 2 is odd, then k is odd.

For all integers n > 2, if n is prime, then n is odd.
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Pigeons and Holes

Theorem (Pigeonhole Principle)

Let n and k be positive integers. When placing n objects into k boxes, if
n > k then at least one box must contain more than one object.

Proof.
Proof by contraposition. We can show that: If all k boxes contain at most
one object, then k ≤ n. Observe that the max number of objects n is the

same as the number of boxes k since there is at most one per box. It is the
case k ≤ n. By the contrapositive, we conclude the theorem is true.
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Examples of applying the pigeonhole principle

For every 27 word sequence in the US constitution, at least two words will
start will the same letter.

If you pick five numbers from integers 1 to 8, then two of them must add
up to 9.

In New York City, there are two non-bald people who have the same
number of hairs on their head.

https://mindyourdecisions.com/blog/2008/11/25/

16-fun-applications-of-the-pigeonhole-principle/
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