Lec 02:

Sets II

Prof. Adam J. Aviv
GW
CSCI 1311 Discrete Structures I Spring 2023

Today

- Subsets
- Union, Intersection, Complement and Difference
- Partitions
- Power Sets
- Order Pairs and Tuples
- Cartesian Products

Sets, so far...

- Sets are a collection of unique items, including other sets, that are designated using braces.
- $\{1,2,3\},\{$ red, blue $\},\{ \},\{5,\{4,3\}, 8\}$
- We described an element as a member of a set using \in or not as a member using \notin.
- $1 \in\{1,2,3\}$ and $7 \notin\{1,2,3\}$
- Two sets are equal $=$ if they contain the same elements, the order is irrelevant.
- $\{1,2,3\}=\{2,1,3\}$ and $\{1,2,3\} \neq\{2,3,4\}$
- Set builder notation: $\{x \in S \mid P(x)\}$
- $\{x \in \mathbb{Z} \quad \mid \quad x>0$ and $x \neq 15\}$
- Cardinality of a set is the number of elements contained in the set - $|\{1,2,3\}|=3 \quad \mid\{1,\{2,3\}\}=2 \quad\{x \in \mathbb{Z} \quad \mid x>-5\}=\infty$
- If a the cardinality of a set is zero, we call that the empty set
- $|\}|=0,|\emptyset|=0$
- But the empty set can be member of a set, $|\{\}\}|=|\{\emptyset\}|=1$

Subsets

Definition

For two sets A and B, A is a subset of B (written $A \subseteq B$) if for all elements $x \in A$ then $x \in B$.

Example

For the set $A=\{9,7,22\}$ and $B=\{9,22,18,42,7\}, A \subseteq B$ (or $B \supseteq A$)
because all the elements of A are also in B, that is $9 \in B, 7 \in B$ and
$22 \in B$.

Definition

A proper subset (written $A \subset B$) is a subset whereby $A \subseteq B$ but there exists at least on element $x \in B$ such that $x \notin A$

Exercises

For the set $A=\{42,18,3,22\}$ and $B=\{22,3,42,18\}$,
is $A \subset B$?
Is $A \subset B$?

For two sets, C and D, where $C=D$, is $C \subseteq D$?

For two sets E and F, if $E \subseteq F$ and $E \supseteq F$, then it must be the case that $E=F$. Why?

Union and Intersection

Definition

The union of two sets A and B, written $A \cup B$, is the set that contains all elements in A or B.

Definition

The intersection of two sets A and B, written $A \cap B$, is the set that contains all elements in A and B.

```
Example
If }A={12,7,19,5} and B={12,3,22,42,5} then
A\cupB={12,7,19,5,3,22,42} and
A\capB={12,5}
```

Is $\emptyset \subset\{5,12,2,19\} ?$

Is $\emptyset \subseteq \emptyset$?

Complements or Difference

Definition

The difference between set B and A (or the relative complement of A in B), written $B \backslash A$ or $B-A$, is the set of elements in B that are not in A.

Example

If $A=\{12,7,19,5\}$ and $B=\{12,3,22,42,5\}$ then
$A \backslash B=A-B=\{7,19,5\}$ and
$B \backslash A=B-A=\{3,22,42\}$

Definition

The compliment of set A, written A^{c} is the set of all elements in the universe U from which sets are populated that are not in A.

Set Operators as Venn Diagrams

Operators on Indexed Collections of Sets

Consider an indexed collection of sets $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ where n is a positive integer, then we can define the following index operations over the sets:

- $\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup A_{3} \cup \ldots \cup A_{n}=\left\{x \mid x \in A_{j}\right.$ for some $\left.j=1,2 \ldots, n\right\}$
- $\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap A_{3} \cap \ldots \cap A_{n}=\left\{x \mid x \in A_{j}\right.$ for all $\left.j=1,2, \ldots, n\right\}$

We can even define these up to ∞ :

- $\bigcup_{i=1}^{\infty} A_{i}=A_{1} \cup A_{2} \cup A_{3} \cup \ldots=\left\{x \mid x \in A_{j}\right.$ for some $\left.j=1,2, \ldots\right\}$
- $\bigcap_{i=1}^{\infty} A_{i}=A_{1} \cap A_{2} \cap A_{3} \cap \ldots=\left\{x \mid x \in A_{j}\right.$ for all $\left.j=1,2, \ldots\right\}$

Exercises

For any set A, what is
$A \cup \emptyset$?
$A \cap \emptyset ?$
$A \cup A$?
$A \cap A$?

Write the set builder notation equivalent for each operation, assuming a universal set U.
$A \cup B$
$A \cap B$
$B-A$
A^{c}

Mutually Disjoint Sets

Definition

Collection of indexed sets $A_{1}, A_{2}, A_{3}, \ldots$ are called mutually disjoint (or pairwise disjoint) if and only if for every two sets A_{i} and $A_{j}, A_{i} \cap A_{j}=\emptyset$

Example

The following sets are mutually disjoint

- $N_{0}=\{n \mid n=3 k$ for some $k \in \mathbb{N}\}=\{0,3,6, \ldots\}$
- $N_{1}=\{n \mid n=3 k+1$ for some $k \in \mathbb{N}\}=\{1,4,7, \ldots\}$
- $N_{2}=\{n \mid n=3 k+2$ for some $k \in \mathbb{N}\}=\{2,5,8, \ldots\}$

Partition

Definition

Let $A_{1}, A_{2}, A_{3}, \ldots$ be a partition of the set A if $A_{1}, A_{2}, A_{3}, \ldots$ are mutually disjoint and $\bigcup A_{i}=A$

Example

The following sets are a partition of \mathbb{N} (natural numbers)

- $N_{0}=\{n \mid n=3 k$ for some $k \in \mathbb{N}\}=\{0,3,6, \ldots\}$
- $N_{1}=\{n \mid n=3 k+1$ for some $k \in \mathbb{N}\}=\{1,4,7, \ldots\}$
- $N_{2}=\{n \mid n=3 k+2$ for some $k \in \mathbb{N}\}=\{2,5,8, \ldots\}$

Because N_{0}, N_{1}, N_{2} are mutually disjoint and $N_{0} \cup N_{1} \cup N_{2}=\mathbb{N}$

Power Sets

Definition

The power set of A, written $\mathcal{P}(A)$, is the set of all subsets of A.

Example

The power set of $A=\{1,2,3\}$ is

$$
\begin{aligned}
\mathcal{P}(A)= & \{\emptyset, \\
& \{1\},\{1,2\},\{1,3\},\{1,2,3\}, \\
& \{2\},\{2,3\}, \\
& \{3\}\}
\end{aligned}
$$

Exercises

Write down three sets that are mutually disjoint

Define a partition for \mathbb{Z}

Is the following a valid partition of the set $M=\{1,2,3, \ldots, 9\}$:

- $\{x \in M \mid x \notin\{1,2,3\}\}$
- $\{x \in M \mid x \notin\{4,5,6\}\}$
- $\{x \in M \mid x \notin\{7,8,9\}\}$

The cadinality of a power set, $|\mathcal{P}(A)|$ is a power of 2 , namely, $|\mathcal{P}(A)|=2^{|A|}$ Why?

The empty set \emptyset is a member of any power set, why?

Because the size of the power set is always a power of 2, we also denote the power set of a set A as 2^{A}

Example

$$
\mathcal{P}(\{a, b\})=2^{\{a, b\}}=\{\emptyset,\{a\},\{b\},\{a, b\}\}
$$

Cartesian Products (or Cross Products)

Definition

The Cartesian product (or cross product) of two sets A and B, written $A \times B$ and read " A cross B ", is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.

Example

We can denote the cross product of two sets using set builder notation:

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

We can further generalize the result for multiple products,

$$
A_{1} \times A_{2} \times A_{3} \times \ldots=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}, \ldots\right\}
$$

Let $A=\{1,2,3\}$ and $B=\{u, v\}$, what is:
$A \times B$
$B \times A$
$A \times A$
$B \times B$

